Page 1 of 2

; To set the baud rate, use this fornula or set to O for auto detection
; baud_const = 256 - (crystal / (12 * 16 * baud))

. equ baud_const, O ;automati c baud rate detection
;. equ baud_const, 255 ; 57600 baud w 11.0592 MHz

;. equ baud_const, 253 ; 19200 baud w 11.0592 MHz

;. equ baud_const, 252 ; 19200 baud w 14,7456 MHz

;. equ baud_const, 243 ; 4808 baud w 12 MHz

;to do automatic baud rate detection, we assune the user will
;press the carriage return, which will cause this bit pattern
;to appear on port 3 pin O (CR = ascii code 13, assune 8Nl format)

E 0101100001
; || ||

start bit----+ +--1Isb nmsb--+ +----stop bit

ywe' || start timer #1 in 16 bit node at the transition between the

;start bit and the LSB and stop it between the MBS and stop bit.

; That will give approx the nunber of cpu cycles for 8 bits. D vide

;by 8 for one bit and by 16 since the built-in UART takes 16 tiner
;overflows for each bit. W need to be careful about roundoff during
;division and the result has to be inverted since tiner #1 counts up. O
;course, timer #1 gets used in 8-bit auto reload node for generating the
ybuilt-in UART' s baud rate once we know what the rel oad val ue shoul d be.

aut obaud:
nov t nod, #0x11 ;get timer #1 ready for action (16 bit nopde)
nmov t con, #0x00
clr a
nov thl, a
nov tll, a
nov a, #baud const ;skip if user supplied baud rate constant
jnz aut oend
nov a, 0x7B ;is there a value froma previous boot?
Xrl Ox7A, #01010101b
Xrl 0x79, #11001100b
Xrl 0x78, #00011101b
cj ne a, Ox7A, autob2
cj ne a, 0x79, autob2
cj ne a, 0x78, autob2
sj np aut oend
autob2: jb p3.0, * ;wait for start bit
jb p3. 0, autob2
jb p3. 0, autob2 ; check it a few nore tinmes to nake
jb p3. 0, autob2 ; sure we don't trigger on some noise
jb p3.0, autob2
j nb p3.0, * ;wait for bit #0 to begin
setb trl ;and now we're timng it
jb p3.0, * ;wait for bit #1 to begin
j nb p3.0, * ;wait for bit #2 to begin
jb p3.0, * ;wait for bit #4 to begin
j nb p3.0, * ;wait for stop bit to begin
clr trl ;stop timng
nov a, tll
nov c, acc.6 ;save bit 6 for rounding up if necessary
nov fo, ¢
nov c, acc.7 ;grab bit 7... it's the I sb we want
nov a, thl
ric a ;do the div by 128
nov c, fO
addc a, #0 ;round of f if necessary
cpl a pinvert since tiner #1 will count up

mhtml:file://D:\SCHEME_NOI\Home Remote\Software\MicrocontrolleMONITOR\... 1/16/2010

i nc
aut oend: nbv

mhtml:file://D:\SCHEME_NOI\Home Remote\Software\Microcontrolle\MONITOR\...

a

0x7B,
OX7A,
0x79,
0x78, a

L QD

Ox7A, #01010101b
0x79, #11001100b
0x78, #00011101b

thl, a

tll, a

t mod, #0x21
pcon, #0x80
scon, #0x52
trl

ro, #0

ro, *

ro, *

Page 2 of 2

;now acc has the correct rel oad value (I hope)

;store the baud rate for next warm boot.

;set tinmer #1 for 8 bit auto-rel oad
;configure built-in uart

;start the baud rate tinmer

1/16/2010

;Serial 1/Oroutines using the 8051's built-in UART

; Alnost all of these should use CIN and COUT, so they
;could pretty easily be adapted to ot her devices which
;could have simlar single character 1/0O routines,
;including the 8051's UART using interrupts and buffers
;in menory.

; Much of this code appears in PAULMONL... see the

; PAULMONL. EQU file for an exanple of how to use sone
;of these routines.

timer reload cal cul ati on
; baud_const = 256 - (crystal / (12 * 16 * baud))

.equ baud_const, 252 ; 19200 baud w 15 Mtz
;. equ baud_const, 243 ;4800 baud w 12 M&

Subroutines for serial 1/0 ;

cin: j nb ri, cin
clr ri
nov a, sbuf
ret

cout : j nb ti, cout
clr ti
nov sbuf, a
ret

new i ne: push acc
mv a, #13
acal | cout
mv a, #10
acal | cout
pop acc
ret

;get 2 digit hex nunber from serial port
; ¢ =set if ESC pressed, clear otherw se
; psw.5 = set if return w no input, clear otherw se

ghex:

ghex8: clr psw. 5

ghex8c:
acal | cin ;get first digit
acal | upper

cj ne a, #27, ghex8f
ghex8d: setb c

clr a

ret
ghex8f: cjne a, #13, ghex8h

setb psw. 5

clr c

clr a

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

Page 1 of 10

1/16/2010

ret
ghex8h: rmnov
acal |
jc
xch
acal |
ghex8j :
acal |
acal |
cj ne
SIRUY
ghex8k: cjne
nov
clr
ret
ghex8m cj ne
ghex8n: acal
SIRUY
ghex8p: cjne
SIRUY
ghex8q: nov
acal |
jc
xch
acal |
nov
swap
orl
clr
ret

r2, a
asc2hex
ghex8c

a, r2 ;r2 will hold hex value of 1st digit

cout

cin ;get second digit
upper

a, #27, ghex8k

ghex8d

a, #13, ghex8m

a, r2

c

a, #8, ghex8p
cout

ghex8c

a, #21, ghex8q
ghex8n

r3, a

asc2hex
ghex8j

a, r3

cout

a, r2

a
a, r3
c

;carry set if esc pressed
;psw.5 set if return pressed w no input

ghex16:

clr

ghex16c¢:
acal |
acal |
cj ne
sethb
clr
nov
nov
ret
ghex16d: cj ne
SIRUY
ghex16f : cj ne
ghex16k: cj ne
SIRUY
ghex16e: acal
acal |
inc
SIRUY

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

r2, #0 ;start out with O
r3, #0

ra, #4 ;nunber of digits left
psw. 5

cin

upper

a, #27, ghexléd

c ; handl e esc key

a

dph, a

dpl, a

a, #8, ghex16f
ghex16k
a, #127, ghex16g ; handl e backspace

r4, #4, ghexlée ; have they entered anything yet?

ghex16c¢c
cout
ghex16y
r4
ghex16c¢c

Page 2 of 10

1/16/2010

ghex16g: cj ne
nov
nov
cj ne
clr
nov
nov
setb

ghex16h:clr
ret

ghex16i : mov
acal |
jc
xch
I cal l
nov
push
acal |
pop
add
nov
clr
addc
nov
dj nz
clr
nov
nov
ret

ghex16x: ;multi
nov
swap
anl
nov
nov
swap
anl
orl
nov
nov
swap
anl
nov
ret

a, #13, ghexl16i ;return key
dph, r3

dpl, r2

rd4, #4, ghex1l6h

a

dph, a

dpl, a

psw. 5

c

rs5, a ; keep copy of original keystroke
asc2hex
ghex16c¢c

a, rb5

cout

a, rb5

acc

ghex16x

acc

a, r2

r2, a

a

a, r3

r3, a

r4, ghexl6c
c

dpl, r2
dph, r3

ply r3-r2 by 16 (shift left by 4)
a, r3

a

a, #11110000b
r3, a

a, r2

a

a, #00001111b
a, r3

r3, a

a, r2

a

a, #11110000b
r2, a

ghex16y: ;divide r3-r2 by 16 (shift right by 4)

nov
swap
anl
nov
nov
swap
anl
orl

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

a, r2

a

a, #00001111b
r2, a

a, r3

a

a, #11110000b
a, r2

r2, a

a, r3

a

a, #00001111b
r3, a

Page 3 of 10

1/16/2010

Page 4 of 10

ret

asc2hex: ;carry set if invalid input
clr c
push b
subb a, # 0
nov b, a
subb a, #10
jc azhi
nov a, b
subb a, #7
nov b, a
a2hi: nov a, b
clr c
anl a, #11110000b ;just in case
jz azh2
setb c
az2h2: nov a, b
pop b
ret
phex:
phex8:
push acc
swap a
anl a, #15
add a, #246
j nc phex_b
add a, #7
phex_b: add a, #58
acal | cout
pop acc
phexl: push acc
anl a, #15
add a, #246
j nc phex_c
add a, #7
phex_c: add a, #58
acal | cout
pop acc
ret
PHEX16:
PUSH ACC
MoV A, DPH
ACALL PHEX
MoV A, DPL
ACALL PHEX
POP ACC
RET
PSTR: ;print string @PTR
PUSH ACC
PSTR1: CLR A
MOVC A, @G\ +DPTR
JZ PSTR2

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ... 1/16/2010

nov
anl
acal
Jc
i nc

c, acc.7

a, #01111111b
| cout

pstr2

dptr

SIwP PSTR1

PSTR2: PCP
RET

cfirst we in
;for serial

power on:
clr

clr
orl

setb
clr

ACC

itialize all the registers we can, setting up
communi cati on.

sp, #0x30

psw. 3 ;set for register bank 0 (init needs it)
psw. 4

PCON, #10000000b ; set double baud rate

TMOD, #00010001b

SCON, #01010000b ; Set Serial for node 1 &
; Enabl e reception

TCON, #01010010b ; Start tiner 1 both timer

a, #baud_const

thl, a
ti ;ti is normally set in this program
ri ;ri is normally cleared

;junp to main programfrom here. .

pi nt 8u: ;pri
push
push
SIRUY

pint8: ;pri
push
push
j nb
nov
| cal
pop
push
cpl
add

pi nt 8b: nov
div
sethb
jz
clr
add
| cal

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

nts the unsigned 8 bit value in Acc in base 10
b
acc
pi nt 8b

nts the signed 8 bit value in Acc in base 10
b
acc
acc.7, pint8b
a, # -
I cout
acc
acc
a
a, #1
b, #100
ab
fo
pi nt 8c
fo
a, #0
I cout

Page5 of 10

1/16/2010

pi

pi
pi

p

p

p

p

p

p

p

p

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

nt 8c:

nt 8d:

nt 8e:

nt 16u:

nt 16a:

nt 16b:

nt 16c:

nt 16d:

nt 16e:

nt 16f:

nt 169:

nov
nov
di v

j nb
jz
add

| cal |
nov
add

| cal |
pop
pop
ret

; print

push
nov
push
clr

nov
div
j nz
j nb
add

a, b

b, #10
ab

f0, pint8d
pi nt 8e
a, #0
cout

a, b

a, #0
cout
acc

b

16 bit unsigned integer in DPTR
;warni ng, destroys r2, r3, r4, r5, pswb5

acc

a, ro
acc
psw. 5
r2, dpl
r3, dph

r4, #16 ;ten-thousands digit
r5, #39

pi nt 16x

pi nt 16b

a, #0

cout

psw. 5

r4, #232;thousands digit
r5, #3

pi nt 16x

pi nt 16¢

psw. 5, pintl6d

a, #0

cout

psw. 5

r4, #100; hundreds digit
r5, #0

pi nt 16x

pi nt 16e

psw. 5, pint16f

a, #0

cout

psw. 5

a, r2

r3, b

b, #10

ab

pi nt 169

psw. 5, pint16h
a, #0

;tens digit

usi ng base 10.

Page 6 of 10

1/16/2010

| cal |

pi nt 16h: nov
nov
add
| cal l

pop
mov
pop
ret

cout

a, b ;and finally the ones digit
b, r3

a, #0

cout

acc

ro, a
acc

;0k, it's a cpu hog and a nasty way to divide, but this code
;requires only 21 bytes! Divides r2-r3 by r4-r5 and | eaves
;quotient in r2-r3 and returns remainder in acc. If Intel

; had made a proper divide, then this would be nmuch easier

pi nt 16x: nov ro, #0
pi nt 16y:i nc ro
clr c
nov a, r2
subb a, ré
nov r2, a
nov a, r3
subb a, rb
nov r3, a
j nc pi nt 16y
dec ro
nov a, r2
add a, ré
nov r2, a
nov a, r3
addc a, rb
nov r3, a
nov a, ro
ret
upper: ;converts the ascii code in Acc to uppercase, if it is |owercase
push acc
clr c
subb a, #97
jc upper 2 ;is it a |l owercase character
subb a, #26
j nc upper 2
pop acc
add a, #224 ;convert to uppercase
ret
upper2: pop acc ;don't change anyt hi ng
ret
pbi n: nov ro, #8
pbin2: rlc a
nov fo, ¢
push acc
nov a, #0
addc a, #0

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

Page 7 of 10

1/16/2010

| cal l cout
pop acc
nov c, fO
dj nz ro, pbin2
ric a
ret
| enstr: nov ro, #0 ;returns length of a string inr0
push acc
lenstrl:clr a
novc a, @+dptr
jz | enstr?2
nmov c,acc.7
i nc ro
Jc | enstr2
i nc dptr
sj np lenstril
| enstr2: pop acc
ret
.equ str_buf, 0x20 ; 16 byte buffer
.equ max_str_len, 19

getstr: ;get a string and store in an internal ram buffer
; str_buf = beginning of the buffer
; max_str_len = max nunber of char to receive
; (buffer must be one larger for null term nation)

nov r0, #str_buf
gstrz: nov @0, #0 ;fill buffer with zeros
inc ro
cj ne ro, #(str_buf+max_str_len+l), gstrz
nov ro0, #str_buf
gstr_in:lcall cin
[call i sascii
j nc gstr_ctrl
cj ne ro, #(str_buf+max_str_len), gstradd
sj np gstr_in
gstradd: | cal l cout
nov @0, a
inc ro
sj np gstr_in
gstr_ctrl
cj ne a, #13, gstrc2 ;carriage return
clr a
nov @0, a
ret
gstrc2: cjne a, #8, gstrc3 ; backspace

gstrbk: cjne ro, #str_buf, gstrbk2
sj np gstr_in

gst r bk2: mov a, #8
| cal | cout
mv a, # '
| cal | cout
mv a, #8
| cal | cout
dec ro

sj np gstr_in

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

Page 8 of 10

1/16/2010

gstrc3: cjne a, #127, gstrc4 ; del ete
sj np gst r bk
gstrcé4:
sj np gstr_in ;ignore all others
pstrbuf: ;print the string in the internal ram buffer
nov ro, #str_buf
pstrbuf 2:
nov a, @O0
jz pstrbuf 3
[call cout
inc ro
sj np pstr buf 2
pstr buf 3:
ret
; get unsigned integer input to acc
gi nt 8u:
nov ro, #0 ;10 holds sumso far
nov ri, #0 ;rl counts nunber of characters
gi8_in: lcall cin
nov r2, a ;r2 is tenmp hol ding space for input
clr c
subb a, #0
jc gi 8 _ctrl
subb a, #10
j nc gi 8 _ctrl
nov a, ro
nov b, #10
mul ab
xch a, b
j nz gi8_in
nov a, r2
clr c
subb a, #0
add a, b
jc gi8_in
nov ro, a
nov a, r2
[call cout
inc ri
sj np gi8_in
gi 8 _ctrl
nov a, r2
cj ne a, #13, gi8c2
nov a, ro
ret
gi 8c2: cjne a, #8, gi8c3
gi 8bk: cjne ri, #0, gi8bk2
sj np gi8_in
gi 8bk2: rmov a, #8
[call cout
nov a, # '

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ...

char

Page 9 of 10

1/16/2010

Page 10 of 10

| cal | cout
mv a, #8
| cal | cout
mv a, ro
nov b, #10
di v ab

mv ro, a

sj np gi8_in
gi 8¢c3: cjne a, #127, qi8c4
sj np gi 8bk

gi 8c4:
sj np gi8_in
i sascii: ;is acc an ascii char, c=1if yes, ¢c=0if no
push acc
cj ne a, #OxT7F, isasc2
sj np i sasc_no
i sasc2: anl a, #10000000b
j nz i sasc_no
pop acc
push acc
anl a, #11100000b
jz i sasc_no
setb c
pop acc
ret
i sasc_no:
clr c
pop acc

ret

mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\MicrocontrolleNMONITOR\De ... 1/16/2010

; Boot st rap Loader for Hexadecimal Files
; witten by G Goodhue, Signetics Co

; This program downl oadi ng a hexadeci mal programfile over an
asynchronous

; serial link to a code RAMin an 80C51 system The downl oaded code may
t hen

; be executed as the main programfor the system This technique may be
used

; in a systemthat normally connects to a host PC so that the code may
come

; froma disk and thus be easily updated. The system RAM nust be wired
to the

; 80C51 systemso that it appears as both data and program nmenory (wre
t he

; RAM normal |y, but use the |logical AND of RD and PSEN for the output
enabl e.)

; To use the bootstrap program an Intel Hex file is sent through the
seri al

; port in 8N1 format at 9600 baud. The baud rate and format may be
altered

; by making small changes in the serial port setup routine (SerStart).

; Note that there is no hardware handshaking (e.g. RTS/ CTS or XOV XOFF)
; i nplemented between the host and the bootstrap system This was done
to keep

; the protocol between the two systens as sinple as possible.

; Since the bootstrap program does not echo the data file, there is no
chance

; of an overrun unless the 80C51 is running very slowy and/or the

; communication is very fast. An 80C51 running at 11.0592 MHz (the nost
; commonly used frequency in systens with serial comunication) will be
abl e

; to easily keep up with 38.4K baud communi cati on wi t hout handshaki ng.

; The downl oad protocol for this programis as foll ows:

;- \When the bootstrap programstarts up, it sends a pronpt character

("=")

; up the serial link to the host.

;- The host may then send the hexadecimal programfile down the serial
l'ink.

; At any time, the host may send an escape character (1B hex) to
abort and

; restart the downl oad process from scratch, beginning fromthe
pronpt .

; This procedure may be used to restart if a downl oad error occurs.

; - At the end of a hex file download, a colon (":") pronpt is
returned. If

; an error or other suspicious circunstance occurred, a flag val ue

wil |

; al so be returned as shown below. The flag is a bit nmap of possible
; conditions and so may represent nore than one problem If an error
; occurs, the bootstrap programw |l refuse to execute the downl oaded
; pr ogr am

; Exception codes:

; 01 - non-hexadeci mal characters found enbedded in a data |ine.

; 02 - bad record type found.

; 04 - incorrect |ine checksum found.

; 08 - no data found.

; 10 - increnented address overfl owed back to zero.

; 20 - RAMdata wite did not verify correctly.

; - If a downl oad error occurs, the downl oad may be retried by first
sendi ng

; an escape character. Until the escape is received, the bootstrap
progr am

; will refuse to accept any data and will echo a question mark ("?")
for

; any character sent.

; - After a valid file downl oad, the bootstrap programw || send a
nessage

; containing the file checksum This is the arithmetic sumof all of
t he

; DATA bytes (not addresses, record types, etc.) in the file,
truncated to

16 bits. This checksum appears in parentheses: "(abcd)". Program
execution may then be started by telling the bootstrap programthe
correct starting address. The format for this is to send a sl ash

("1")
; foll owed by the address in ASCII hexadecimal, followed by a
carri age

; return. Exanple: "/8A31<CR>"

;- If the address is accepted, an at sign ("@) is returned before
executing
; the junp to the downl oaded file.

; The bootstrap | oader can be configured to re-map interrupt vectors to
fhgomnloaded programif junps to the correct addresses are set up. For

; instance, if the program RAMin the systemwhere this programis to be
?Sggarts at 8000 hexadecimal, the re-mapped interrupts may begin at 8003
Togxternal interrupt 0, etc.

$Titl e(Bootstrap Loader for Hexadecimal Files)
$Dat e(04- 13- 92)
$MOD51

; Definitions
LF EQU 0Ah ; Line Feed character
CR EQU 0Dh ; Carriage Return character
ESC EQU 1Bh ; Escape character
St art Char EQU Y ; Line start character for hex
file.
Sl ash EQU e ; Go command character
Ski p EQU 13 ; Value for "Skip" state.
Ch DATA OFh ; Last character received.
State DATA 10h ; ldentifies the state in
process.
Dat aByt e DATA 11h ; Last data byte received.
Byt eCount DATA 12h ; Data byte count from current
line.
H ghAddr DATA 13h ; High and | ow address bytes from
t he
LowAddr DATA 14h ; current data line
RecType DATA 15h ; Line record type for this line.
ChkSum DATA 16h ; Cal cul at ed checksum recei ved.
HASave DATA 17h ; Saves the high and | ow address
byt es
LASave DATA 18h ; fromthe | ast data |line
Fi | ChkHi DATA 19h ; File checksum hi gh byte.
Fi | ChkLo DATA 1Ah ; File checksum | ow byte.
Fl ags DATA 20h ; State condition flags.
HexFl ag BIT Fl ags. 0 ; Hex character found.
EndFl ag BIT Fl ags. 1 ; End record found.
DoneFl ag BIT Fl ags. 2 ; Processing done (end record or
some
; ki nd of error.
EFl ags DATA 21h ; Exception fl ags.
Err Fl agl BIT EFl ags. 0 ; Non- hex character enbedded in
dat a.
Err Fl ag2 BIT EFl ags. 1 ; Bad record type.
Err Fl ag3 BIT EFl ags. 2 ; Bad |ine checksum
Err Fl ag4 BIT EFl ags. 3 ; No data found.
Err Fl ag5 BIT EFl ags. 4 ; I ncrenent ed address overfl ow
Err Fl ag6 BIT EFl ags. 5 ; Data storage verify error
Dat Ski pFl ag BI' T Fl ags. 3 ; Any data found should be
i gnor ed.

Reset and Interrupt Vectors

; The followi ng are dummy | abel s for re-mapped interrupt vectors. The

; addresses shoul d be changed to match the menory nmap of the target
system

ExInt0O EQU 8003h ; Remap address for ext interrupt
0.
TOI nt EQU 800Bh ; Timer O interrupt.
Exint1 EQU 8013h ; External interrupt 1.
T1l nt EQU 801Bh ; Timer 1 interrupt.
Ser | nt EQU 8023h ; Serial port interrupt.
OoRG 0000h
LIMP Start ; G0 to the downl oader program

; The following are intended to allow re-mapping the interrupt vectors
to the

; users downl oaded program The junp addresses should be adjusted to
refl ect

; the menory mapping used in the actual application.

; Other (or different) interrupt vectors may need to be added if the
t ar get
; processor is not an 80C51.

ORG 0003h

; LIMP ExInt0 ; External interrupt O.
RETI
ORG 000Bh

; LIMP TOI nt ; Timer O interrupt.
RETI
ORG 0013h

; LIMP Exint1 ; External interrupt 1.
RETI
ORG 001Bh

; LIMP T1l nt ; Timer 1 interrupt.
RETI
ORG 0023h

; LIMP Ser | nt ; Serial port interrupt.
RETI

Start: MOV | E, #0 ; Turn off all interrupts.
MOV SP, #5Fh ; Start stack near top of '51
RAM
ACALL Ser Start ; Setup and start serial port.
ACALL CRLF ; Send a pronpt that we are here.
MoV A# = : "<CRLF> ="

ACALL Put Char

ACALL Hexl n ; Try to read hex file from
serial port.

ACALL ErrPrt ; Send a message for any errors

or
; war ni ngs that were noted.

MOV A, EFl ags ; W want to get stuck if a fatal

Jz Hex K ; error occurred.
Err Loop: MOV A # ; Send a pronpt to confirmthat
we

ACALL Put Char ; are 'stuck'. " ?"

ACALL Get Char ; Wait for escape char to flag
rel oad.

SIMP Err Loop
Hex OK: MOV EFl ags, #0 ; Clear errors flag in case we
re-try.

ACALL Get Char ; Look for GO conmand.

CINE A, #Sl ash, Hex K ; lgnore other characters
received.

ACALL Cet Byt e ; Get the GO high address byte.

JB Err Fl agl, HexOK ; I'f non-hex char found, try
agai n.

MOV H ghAddr, Dat aByte ; Save upper GO address byte.

ACALL Cet Byt e ; Get the GO | ow address byte.

JB Err Fl agl, HexOK ; I'f non-hex char found, try
agai n.

MOV LowAddr, Dat aByte ; Save the | ower GO address byte.

ACALL Get Char ; Look for CR

CINE A, #CR, HexXX ; Re-try if CR not there.

; Al'l conditions are net, so hope the data file and the GO address are

; correct, because now we're comm tted.

MOV A# @ : Send confirmation to GO " @"
ACALL Put Char
JNB T, $; Wait for conpletion before
&0 ng.
PUSH LowAddr ; Put the GO address on the
st ack,
PUSH H ghAddr ; SO we can Return to it.
RET ; Finally, go execute the user
program
; Hexadeci mal File Input Routine
Hexl n: CLR A ; Clear out some variabl es.
MoV State, A
MOV Fl ags, A

MOV H ghAddr, A

condi ti on.
St at eLoop:

hex.

t erm nat ed.

ACALL
ACALL

MoV
ACALL

JNB

ACALL
MoV
ACALL
MoV
ACALL
MoV
ACALL
MoV
ACALL
ACALL
RET

LowAddr, A
HASave, A
LASave, A
ChkSum A
Fil ChkH , A
Fi | ChkLo, A
EFl ags, A
Err Fl ag4

Cet Char
AscHex

Ch, A
CGoSt at e

DoneFl ag, St at eLoop

Put Char

A # ('

Put Char

A, Fi | ChkHi
Pr Byt e

A, Fi | ChkLo
Pr Byt e

A #)'

Put Char
CRLF

; Find and execute the state routine poi

CGoSt at e:

range.

St at eTabl e:

byte 1.

byte 2.

type.

condi ti on.

MoV
ANL

A State
A, #0Fh

A
DPTR, #St at eTabl e
@\+DPTR

St Wi t
St Lef t
St Get Cnt
St Lef t

St Get Ad1
St Lef t

St Get Ad2
St Lef t

St Get Rec
St Lef t
St Get Dat
St Lef t
St Get Chk
St Ski p

BadSt at e

Start with a 'no data'
Get a character for processing.
Convert ASCl|-hex character to
Save result for later.
Go find the next state based on

this char.
; Repeat until done or

Send the file checksum back as
confirmation. " (abcd) "

Exit to main program

nted to by "State".

CGet current state.
Insure branch is within table

Adj ust offset for 2 byte insts.

CGo to appropriate state.

O - Wit for start.

1 - First nibble of count.
2 - CGet count.

3 - First nibble of address
4 - CGet address byte 1.

5 - First nibble of address
6 - Get address byte 2.

7 - First nibble of record

8 - Get record type.

9 - First nibble of data byte.
10 - Get data byte.

11 - First nibble of checksum
12 - Get checksum

13 - Skip data after error

14 - Shoul d never get here.

AP BadSt at e - 15 - " " " "

; This state is used to wait for a line start character. Any other
characters
; received prior to the line start are sinply ignored.

St\Wait: MOV A, Ch ; Retrieve input character.
CINE A #Start Char, SWEX ; Check for line start.
I NC State ;. Received |line start.
SVEEX: RET

; Process the first nibble of any hex byte.

StlLeft: MOV A, Ch ; Retrieve input character.

JNB HexFl ag, SLERR ; Check for hex character.

ANL A, #0Fh ; I solate one nibble.

SWAP A ; Move nibble too upper |ocation.

MOV Dat aByt e, A ; Save | eft/upper nibble.

I NC State ; Go to next state.

RET ; Return to state | oop.
SLERR: SETB Err Fl agl ; Error - non-hex character
found.

SETB DoneFl ag ; File considered corrupt. Tell
mai n

RET

; Process the second ni bble of any hex byte.

St Ri ght : MOV A, Ch ; Retrieve input character.

JNB HexFl ag, SRERR ; Check for hex character.

ANL A, #0Fh ; I solate one nibble.

ORL A, Dat aByt e ; Conpl ete one byte.

MOV Dat aByt e, A ; Save data byte.

ADD A, ChkSum ; Update |ine checksum

MoV ChkSum A ; and save.

RET ; Return to state | oop.
SRERR: SETB Err Fl agl ; Error - non-hex character
found.

SETB DoneFl ag ; File considered corrupt. Tell
mai n

RET

; CGet data byte count for |ine.

St Get Cnt : ACALL St Ri ght ; Conpl ete the data count byte.
MoV A, Dat aByt e
MoV Byt eCount , A
I NC State ; Go to next state.
RET ; Return to state | oop.

; Get upper address byte for |ine.

St Get Ad1: ACALL St Ri ght ; Conpl ete the upper address

byt e.

;. CGet | ower

St Get Ad2:
byt e.

i Get

St Get Rec:

record.

SGRDat :
SGREX:

SGRErr:

; CGet a data byte.

St Get Dat :

skip

of

SGD1:

state.

MoV
MoV
I NC
RET

address byte for

ACALL

MoV
MoV
I NC
RET

record type for

ACALL
MoV
MoV
Jz
CINE
SETB
SETB

MoV
SIwP

I NC
RET

SETB
SETB

RET

ACALL
JB

ACALL

A, Dat aByt e
H ghAddr, A
State

i ne.
St Ri ght

A, Dat aByt e
LowAddr , A
State

i ne.

St Ri ght

A, Dat aByt e
RecType, A
SCRDat

A #1, SGREr r
EndFl ag

Dat Ski pFl ag

St at e, #11
SGREX

State

Err Fl ag2
DoneFl ag

St Ri ght
Dat Ski pFl ag, SGD1

Store

A, Dat aByt e
A Fi | ChkLo

Fi | ChkLo, A

A

A, Fi | ChkHi

Fi | ChkHi , A

A, Dat aByt e

Byt eCount , SGDEX
State

SGDEX2

Save new hi gh address.
Go to next state.
Return to state | oop.

Conpl ete the | ower address

Save new | ow addr ess.
CGCo to next state.
Return to state | oop.

Conpl ete the record type byte.

Get record type.

This is a data record.
Check for end record.

This is an end record.

I gnore data enbedded in end

Go to checksum for end record.

Go to next state.
Return to state | oop.

Error, bad record type.

File considered corrupt. Tell

Conpl ete the data byte.
Don't process the data if the

flag is on.
Store data byte in nmenory.

Update the file checksum
which is a two-byte summati on

all data bytes.

Last data byte?
Done with data, go to next

SGDEX: DEC State ; Set up state for next data
byt e.
SGDEX2: RET ; Return to state | oop.

;. Get checksum

St Get Chk: ACALL St Ri ght Conpl ete the checksum byte.

JNB EndFl ag, SGC1 ; Check for an end record.
SETB DoneFl ag ; If this was an end record,
SIMP SCCEX ; we are done.
SCC1: MoV A, ChkSum ; Get cal cul ated checksum
INZ SCCEr r ; Result should be zero.
\%e.Y ChkSum #0 ; Preset checksum for next |ine.
MOV St at e, #0 ; Line done, go back to wait
state.
MOV LASave, LowAddr ; Save address byte fromthis
line for
MOV HASave, H ghAddr ; | at er check.
SGCEX: RET ; Return to state | oop.
SGCErr: SETB Err Fl ag3 ; Line checksum error.
SETB DoneFl ag ; File considered corrupt. Tell
mai n.
RET

; This state used to skip through any additional data sent, ignoring it.

St Ski p: RET ; Return to state | oop.
; A place to go if an illegal state conmes up sonehow.
BadSt at e: MOV St at e, #Ski p ; If we get here, something very
bad

RET ; happened, so return to state
| oop.

; Store - Save data byte in external RAM at specified address.

Store: MOV DPH, Hi ghAddr ; Set up external RAM address in
DPTR.

MoV DPL, LowAddr

MoV A, Dat aByt e

MOVX @PTR, A ;. Store the data.

MOVX A, @PTR ; Read back data for integrity
check.

CINE A Dat aByte, StoreErr ; Is read back OK?

CLR Err Fl ag4 ; Show that we've found sone
dat a.

I NC DPTR ; Advance to the next addr in
sequence.

MOV H ghAddr, DPH ; Save the new address

MoV LowAddr , DPL

CLR A

CINE A, Hi ghAddr, St oreEx ; Check for address overfl ow

CINE A, LowAddr , St or eEx ; (both bytes are 0).
SETB Err Fl ag5 ; Set warning for address
overfl ow.
St or eEx: RET
StoreErr: SETB Err Fl ag6 ; Data storage verify error.
SETB DoneFl ag ; File considered corrupt. Tell
mai n
RET

; Subroutine sumary:

SerStart - Serial port setup and start.

: GetChar - CGet a character fromthe serial port for processing.

; CGetByte - Get a hex byte fromthe serial port for processing.

; PutChar - Qutput a character to the serial port.

; AscHex - See if char in ACCis ASCII-hex and if so convert to hex
ni bbl e.

; HexAsc - Convert a hexadecimal nibble to its ASCII character
equi val ent .

; ErrpPrt - Return any error codes to our host.

; CRLF - output a carriage return/ line feed pair to the serial
port.

; PrByte - Send a byte out the serial port in ASCII hexadeci nal
format.

; SerStart - Serial port setup and start.

SerStart: MOV A, PCON ; Make sure SMOD is off.
CLR ACC. 7
MoV PCON, A
MOV TH1, #0FDh ; Set up timer 1.
MoV TLO, #0FDh
MoV TMOD, #20h
MoV TCON, #40h
MOV SCON, #52h ; Set up serial port.
RET

; CetByte - CGet a hex byte fromthe serial port for processing.

Cet Byt e: ACALL CGet Char ; Get first character of byte.
ACALL AscHex ; Convert to hex.
MOV Ch, A ; Save result for later.
ACALL StLeft ; Process as top nibble of a hex
byt e.
ACALL CGet Char ; CGet second character of byte.
ACALL AscHex ; Convert to hex.
MOV Ch, A ; Save result for later.

ACALL St Ri ght Process as bottom ni bbl e of hex

byt e.
RET
; GetChar - CGet a character fromthe serial port for processing.

Get Char : JNB R, $; Wait for receiver flag.
CLR Rl Cl ear receiver flag.

MOV A, SBUF Read character.

CINE A, #ESC, GCEX Re-start inmediately if Escape
char.

LIMP Start
GCEX: RET

; PutChar - Qutput a character to the serial port.

Put Char : JNB T, $; Wait for transmitter flag.
CLR TI ; Clear transmtter flag.
MoV SBUF, A ; Send character.
RET

; AscHex - See if char in ACCis ASCII-hex and if so convert to a hex
ni bbl e.

; Returns nibble in A, HexFlag tells if char was really hex. The ACC
i s not

; altered if the character is not ASCI1 hex. Upper and | ower case
letters

; are recogni zed.

AscHex: CINE A # 0, AHL : Test for ASCI| nunbers.
AH1L: JC AHBad . Is character is less than a
'0'?

CINE A # 9 +1, AH2 ; Test val ue range.
AH2: JC AHVal 09 : Is character is between '0" and
'9'?

CINE A # A, AH3 ; Test for upper case hex
|l etters.
AH3: JC AHBad : Is character is |l ess than an
"A?

CINE A # F +1, AH4A ; Test val ue range.
AH4: JC AHVal AF : Is character is between "A and
"F?

CINE A # a' , AH5 ;. Test for |ower case hex
|l etters.
AH5: JC AHBad : Is character is |l ess than an
a'?

CINE A # f'+1, AHo ; Test val ue range.
AH6: JNC AHBad : Is character is between "a' and
2

CLR C

SUBB A #27h ; Pre-adjust character to get a
val ue.

SIMP AHVal 09 : Now treat as a nunber.
AHBad: CLR HexFl ag ; Flag char as non-hex, don't

alter.

SIwP AHEX ; Exit

AHval AF: CLR C

SUBB A, #7 ; Pre-adjust character to get a
val ue.
AHval 09: CLR C

SUBB A # 0 ; Adjust character to get a
val ue.

SETB HexFl ag ; Flag character as 'good' hex.
AHEX: RET

;. HexAsc - Convert a hexadecinal nibble to its ASCI| character
equi val ent .

HexAsc: ANL A, #0Fh ; Make sure we're working with
only
; one ni bbl e.
CINE A, #0Ah, HA1 ; Test val ue range.
HA1L: JC HAval 09 ; Value is 0 to 9.
ADD A #7 ; Value is Ato F, extra
adj ust ment .
HAVal 09: ADD A# 0 ; Adjust value to ASCI| hex.
RET

: ErrPrt - Return an error code to our host.

ErrPrt: MOV A # ; First, send a pronpt that we
are

CALL Put Char ; still here.

MOV A, EFl ags ; Next, print the error flag
val ue if

Jz ErrPrtEx ; it is not O.

CALL Pr Byt e

ErrPrt Ex: RET

; CRLF - output a carriage return/ line feed pair to the serial port.

CRLF: MOV A, #CR
CALL Put Char
MOV A, #LF
CALL Put Char
RET

; PrByte - Send a byte out the serial port in ASCI| hexadeci mal format.

Pr Byt e: PUSH ACC ; Print ACC contents as ASCl |
hex.

SWAP A

CALL HexAsc ; Print upper nibble.

CALL Put Char

POP ACC

CALL HexAsc ; Print | ower nibble.

CALL Put Char

END

"Bit-bang" serial 1/0O functions for the 8051.

These routines transmt and receive serial data using two general
/O pins, in 8 bit, No parity, 1 stop bit format. They are useful
for performng serial 1/0O on 8051 derivatives not having an
internal UART, or for inplenmenting a second serial channel.

Dave Dunfield - May 17, 1994

EE I T R

NOTE that RO and Rl are used by the functions. You may w sh to
add PUSH POP instructions to save/restore these registers.

*

T™XD EQU P1.0 Transmit on this pin

RXD EQU Pl.1 Receive on this pin

* The serial baud rate is determ ned by the processor crystal, and

* this constant which is calculated as: (((crystal/baud)/12) - 5) / 2

BI TTI M EQU 45 (((11059200/9600)/12) - 5) | 2
*
* Transmit character in Avia TXD |line
*
putc CLR TXD Drop Iine for start bit
MOV RO, #BITTIM Wait full bit-tine
DINZ RO, * For START bit
MOV R1, #8 Send 8 bits
putcl RRC A Move next bit into carry
MOV TXD, C Wite next bit
MOV RO, #BITTIM Wait full bit-tinme
DINZ RO, * For DATA bit
DINZ R1,putcl wite 8 bits
SETB TXD Set line high
RRC A Restore ACC contents
MOV RO, #BITTIM Wait full bit-tinme
DINZ RO, * For STOP bit
RET

*

* Receive a character fromthe RXD line and return in A
*

getc JB RXD, * VWait for start bit
MOV RO, #BITTIM 2 Wait 1/2 bit-time
DINZ RO, * To sanple in mddle
JB RXD, get c Insure valid
MOV R1, #8 Read 8 bits
getcl MOV RO, #BITTIM Vit full bit-time
DINZ RO, * For DATA bit
MOV C RXD Read bit
RRC A Shift it into ACC

DINZ R1,getcl read 8 bits
RET go home

Intel(R) MCS(R) 51/251 Microcontrollers Page 1 of 8

| ke i rrirube and bl ws kot woo thinkd

Embedc Llpren ceesrigetivon el e el seit elick s this v | '|m L“S® 51/251 MCS51
On-Chi p tihe botram rightearmer of the wecksite and helz us improwe

iFothes] A,
Embedde_d &. Wl speons prarticipehe i this reseanchi
Communlcatlons Application rote Legal Informmation Privacy Policy ‘
Processors MCS® 51 On-Chir 1o
. o Yes 0 No
Chipsets
Boards A Simplified Users Guide
Deyd opment K its Contents Page
Solid-State Drives and Ovarvi
Caching VerVIew
Storage Serial Port Modes . 3
Ethernet Controllers Bfalud Rate Generation Tables
Desktop Adapters M 4
Server Adapters Timer 1 =
Why are some baud rates missing from the table? 6

Wireless Networking

Some common problems and questions when
trying to set up the serial port in the MCS®51

Family.
What is the purpose of using interrupts and/or polling in

serial applications? 6
How does the serial interrupt and polling work? 7
When should | use polling or interrupts? 8
Common Problems

| am viewing data on an oscilloscope and | am not seeing 8

the data transmitted; | see other datainstead. Why?

| am moving datainto SBUF, all my registersare
configured for serial communications, nothing isbeing 8
transmitted. Why?

All of my registers are set up correctly, but when | receive
data, the microcontroller never vectors to my interrupt 8
routine. Why?

| am trying to transmit data and all | see on my

oscilloscope is a square wave coming out of the Txd pin. 8
Why?

| am receiving data and | move it to another register and

read it. The value that | am reading isnot the data that | 8
received. Why?

Sample Programs

MO.ASM 9
M1T1.ASM 10
M2.ASM 11
M3T2.ASM 12
M1INT.ASM 13
Overview

The MCS®-51 family contains a flexible set of microcontrollers. These 8-bit embedded
controllers have different features such as on-chip program memory, data RAM and
some even have integrated A/D converters. One feature that al of the microcontrollers
in the MCS®-51 family have in common is an integrated UART (Universal
Asynchronous Receiver Transmitter).

This guide has been designed so that any programmer with basic microcontroller
experience can learn how to use the general features of the on-chip UART inaMCS®-

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 2 of 8

51 microcontroller. This document has been created and designed in response to
repeated inquires on the usage of the serial port. Working examples have been included
and explained to ease the learning process.

The serial port can operate in 4 modes:

Mode 0: TXD outputs the shift clock. In thismode, 8 bits are transmitted and received
by the same pin, RXD. The data s transmitted starting with the least significant bit
first, and ending with the most significant bit. The baud rate is fixed at 1/12 the
oscillator frequency.

Mode 1: Serial data enters through the RXD pin and exits through the TXD pin. In this
mode, a start bit of logic level 0 is transmitted then 8 bits are transmitted with the least
significant bitsfirst up to the most significant bit; following the most significant bit is
the stop bit which isalogic 1. When receiving data in this mode, the stop bit is placed
into RB8 in the SFR (Special Function Register) SCON. The baud rate is variable and
is controlled by either timer 1 or timer 2 rel oad val ues.

Mode 2: Serial data enters through the RXD pin and exits through the TXD pin. In this
mode, atotal of 11 bits are transmitted or received starting with a start bit of logic level
0, 8 bits of data with the least significant bit first, a user programmable ninth data bit,
and a stop hit of logic level 1. The ninth databit is the value of the TB8 bit inside the
SCON register. This programmable bit is often used for parity information. The baud
rate is programmable to either 1/32 or 1/64 of the oscillator frequency.

Mode 3: Mode threeisidentical to mode 2 except that the baud rate isvariable and is
controlled by either timer 1 or timer 2 reload values.

For more detailed information on each serial port mode, refer to the "Hardware
Description of the 8051, 8052, and 80c51." in the 1993 Embedded Microcontrollers and
Processors (270645).

Baud Rate Generation Using Timer Two

_ Faer
Baud Rate = mrrmmmmnmmoamny

F
(RCAPZHRCAPIL) = 65536 - o222

RCAP2L and RCAP2H are 8-hit registers combined as a 16-bit entity that timer 2 uses
asareload value. Each time timer 2 overflows (goes one past FFFFH), this 16-bit
reload value is placed back into the timer, and the timer begins to count up from there
until it overflows again. Each time the timer overflows, it signals the processor to send
adata bit out the serial port. The larger the reload value (RCAP2H, RCAP2L), the more
frequently the data bits are transmitted out the serial port. Thisfrequency of data bits
transmitted or received is known as the baud rate.

Table One
Freq Freq
Baud Rate|(Mhz) | RCAP2H | RCAP2L | Baud Rate| (Mhz) | RCAP2H | RCAP2L
38,400 16 FF F3 56,800 |[11.059 FF FA
19,200 16 FF E6 38,400 [11.059 FF F7
9,600 16 FF cC 19,200 |11.059 FF EE
4,800 16 FF 98 9,600]11.059 FF DC
2,400 16 FF 30 4,800]11.059 FF B8
1,200 16 FE 5F 2,400 |11.059 FF 70
600 16 FC BF 1,200 |11.059 FE EO
300 16 F9 7D 600 11.059 FD Co
110 16 EE 3F 300 11.059 FB 80
375,000 12 FF FF 4,800 6 FF D9
9,600 12 FF D9 2,400 6 FF B2
4,800 12 FF B2 1,200 6 FF 64

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 3 of 8

2,400 12 FF 64 600 6 FE C8

1,200 12 FE C8 300 6 FD 8F
600 12 FD 8F 110 6 Fo 57
300 12 FB 1E

Baud Rate Generation Using Timer One

_ 2 Sjﬁ?ﬂFM
Baud Eate = R T
_] S F{K.SE‘

TH1 =236- BaudRate 524

Similar to timer 2, TH1 is an 8-bit register that timer 1 uses asit'sreload value. The
larger the number placed in TH1, the faster the baud rate. SMOD1 is bit position 7 in
the PCON register. This bit is called the "Double Baud Rate Bit". When the serial port
isinmode 1, 2 or 3 and timer 1 is being used as the baud rate generator, the baud rate
can be doubled by setting SMOD1. For example; TH1 equals DDH and the oscill ator
frequency equals 16Mhz, then the baud rate equals 2400 baud if SMOD1 is set. If
SMOD1 is cleared, for the same example, then the baud rate would be 1200.

Table Two
Freq Freq
Baud Rate | (Mhz) | SMOD1 | TH1 | Baud Rate | (Mhz) | SMOD1 | TH1

4,800 16 1 EF 56,800 11.059 1 FF
2,400 16 1 DD 19,200 11.059 1 FD
1,200 16 1 BB 9,600 11.059 1 FA
600 16 1 75 4,800 11.059 1 F4
2,400 16 0 EF 2,400 11.059 1 E8
1,200 16 0 DD 1,200 11.059 1 DO
600 16 0 BB 600 11.059 1 A0
300 16 0 75 300 11.059 1 40
4,800 12 1 F3 9,600 11.059 0 FD
2,400 12 1 E6 4,800 11.059 0 FA
1,200 12 1 cC 2,400 11.059 0 F4
600 12 1 98 1,200 11.059 0 E8
300 12 1 30 600 11.059 0 DO
2,400 12 0 F3 300 11.059 0 A0
1,200 12 0 E6 1,200 6 0 F3
600 12 0 cC 600 6 0 E6
300 12 0 98 300 6 0 cC
110 6 0 72

Baud Rates Missing

Why are some baud rates missing from the table?

If you look at the table carefully, you will notice that some common baud rates are
missing in certain scenarios. The reason is, certain microcontroller operating
frequencies will only support specific baud rates. Just because a baud rate rel oad value
can be calculated by the previous equations, doesn't mean that the microcontroller can
accurately generate that specific baud rate. If you would like to calculate a baud rate
that isnot in the previous tables, or if you want to find out if a specific baud rate can be
accurately generated at a specific operating frequency, follow these steps:

Use the appropriate equation to calcul ate the reload val ue.

Round off the calculated rel oad val ue to the nearest whole number.

Recal cul ate the baud rate using the rounded off reload value.

Calculate the percent error between the two baud rates by using the following
formula:

APWDNPE

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 4 of 8

bl des red—cololated
Q.r'.?"O.?":a [desire -amats J><1':'O
desived

5. If the percent error isless that 2%, then the rounded reload value is adequate to
generate the specified baud rate. If the error is greater than 2%, this meansthe
baud rate generated by the microcontroller would be different from the baud rate
that you expect to be transmitting and there may be aloss of datain the process.

Common Questions

The intention of this section is to provide quick answersto common problems and
questions when trying to set up the seria port in the MCS®-51 family. This has been
compiled by Intel employees who technically support the MCS®-51 family of
microcontrollers.

1. What isthe purpose of using interrupts and/or polling in serial applications? In
serial applications, it is necessary to know when data has completed transmission or has
completed reception. Whenever data has completed transmission or completed
reception, there is a specific bit (flag) that is set when the process has been compl eted.
These two specific bits are located in the SCON register and determine when an
interrupt will occur or when the polling sequence should be complete. The bits are RI
and TI.

1 Rl isthereceiveinterrupt flag. When operating in mode O of the UART, this bit
is set by hardware when the 8th bit is received. In all other UART operating
modes, the RI bit is set by hardware upon reception halfway through the stop hit.
RI bit must be cleared by software at the end of the interrupt service routine or at
the end of the polling sequence.

1 Tl isthe transmit interrupt flag. Thisbit operatesin the same manner asRI
except it isvalid for transmission of data, not reception. By using either
interrupts or polling, it is necessary to check to seeif either of the two bits are set.

1 For the case of transmitting data, it is necessary to "watch" to seeif the Tl bitis
set. A set bit hasalogic level of 1 and a cleared bit has alogic level of O. If you
try to transmit more data and your previous data has not yet fully been
transmitted, you will overwrite on top of it and have data corruption. Therefore,
you must only transmit the next piece of data after the transmission of the current
data has been completed.

1 For the case of receiving data, it is necessary to watch and see if the RI bit is set.
Thishit serves asimilar purpose asthe Tl bit. Upon reception of data, it is
necessary to know when data has been completely received so it can be read
before more data comes and overwrites the existing data in the register.

2. How doesthe serial interrupt and polling work?

A serial interrupt will occur whenever the RI or the T bit has been set and the serial
interrupts have been enabled in the IE and SCON register. When Tl or RI is set, the
processor will vector to location 23H. A common seria interrupt routine would be the
following:

orgj "23h
JMP label
label: subrguti ne code
RETI

After the processor vectorsto 23H, it will then vector off to location label which hasa
physical location defined by the assembler. Label is the start of your serial interrupt
subroutine which should do the following:

1 Find out which bit caused the interrupt RI or TI.
1 Move datainto or out of the SBUF register if necessary.
1 Clear the corresponding bit that caused the interrupt.

Thelast line of your serial interrupt subroutine should be RETI. This makes the

processor vector back to the next line of code to be executed before the processor was
interrupted.

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 5 of 8

Polling is easier to implement than interrupt driven routines. The technique of polling is
simply to continuously check a specified bit without doing anything else. When that bit
changes state, the loop should end. For the case of serial transmission, a section of
sample code would be the following:

JNB TI, $;this code will jJump onto itself until Tl is set
CLRTI ;clear the TI bit

For receive polling, just replace the Tl in the previous code with RI. In either case,
make sure that after polling has completed, clear the bit that you were polling.

3. When should | choose polling or interrupts?

Polling is the simplest to use but it has a drawback; high CPU overhead. This means
that while the processor is polling, it is not doing anything else, thisis a waste of the
CPU'stime and tends to make programs slow.

Interrupts are a little more complex to use but allows the processor to do other
functions. Thus, serial communication functions are executed only when needed. This
makes programs run faster than programs that use polling.

Common Problems

I am viewing data on an oscilloscope and | am not seeing thedata | transmitted; |
see other data instead. Why?

You are not waiting for the data to be completely transmitted before you send more
data out. The new data is being written on top of the old data before it exits to the serial
port. See"What is the purpose of using interrupts and/or polling in serial applications"
on page 6.

I am moving data into SBUF, all my registersare configured for serial
communications, and nothing is being transmitted. Why?

Chances are that the timer you chose for your baud rate generator was never started or
"turned on.”

All of theregistersare set up correctly, but when | receive data, the
microcontroller never vectorsto theinterrupt routine. Why?

The global interrupt enable bit has not been set or the serial interrupt bit has not been
set. The address of the first line of the seria interrupt routine was not at location 23H.

I am trying to transmit data and all | see on the oscilloscope isa squar e wave
coming out of the Txd pin. Why?

The microcontroller serial portisin mode 0. In mode 0O, the Txd pin outputs the shift
clock (asquare wave). Datais actually transmitted and received through the Rxd pin.

| am receiving data and | move it to another register and read it. Thevaluethat |
am reading isnot thedatathat | received. Why?

The data that was received was not moved out of the buffer (SBUF) fast enough before
the new data arrived. Therefore, part of the old data got overwritten before you
transferred it to another register. To avoid this, see "What isthe purpose of using
interrupts and/or polling in serial applications?’ on page 6.

Sample Programs

Thefollowing programs have been designed to aid in the understanding of the general
setup and transmission of serial applications.

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 6 of 8

;FILE: MO.ASH

;

;THIS PROGRAM TRANSHITS THE HEX VALUE ALk REPETITIVELY ACEO53 THE 3SERIAL PORT
;0F A MC3e-51 MICROCONTROLLER IN MODE O

JDETATLS:

;HODE 0: 3ERIAL DATA EXITS AND ENTERS THROUGH THE EXD FIN. THE

;TXD PIN OUTPUTS THE SHIFT CLOCK. 1IN MODE O, § BITS ARE TRANGMITTED/RECEIVED
;3TARTING WITH THE LEAST SIGHNIFICANT EIT. THE BAUD RATE I35 FIXED TO 1/1Z THE
;05CILLATOR. FREQUENCY.

;

;

ORG O0H
JHP MAIN
MATIN: MOV SCON,#00H J3ET UP FOR MODE O
CLR TI sREADY TO TRANSHIT
LOOP: MOV SEUF,#0ALH JTRANSHMIT AAH
INE TI,§ JWAIT FOR END OF TRANSMISSION
CLR TI ;CLEAR TRANZMIT FLAG
JHFP LOOP ;00 IT ALL AGAIN
END

FILE: MITL1.AGH

;THIS PROGRAM TRANSMITS THE HEX VALUE AA REPETITIVELY ACRO33 THE SERIAL FORT
0F A MC3e-51 IN MODE 1 USING TIMER 1 AT A RATE OF l=00 BAUD

;DETATILS:

(MODE 1: 10 BIT3 ARE TRANSMITTED THROUGH TxXD OR RECEIVED THROUGH EXD WITH THE
$3TART BIT FIRST (0), & DATA BITS WITH THE LEA3T SIGNIFICANT BIT FIR3T, AND A
#3TOF BIT (l). ON RECEIVE, THE STOF BEIT GOE:X INTO RES IN SPECIAL FUNCTION
;REGISTER 3C0N. THE BAUD RATE IS5 VARIARLIE.

H

H

OFRG 0O0H
JHP MAIN
MAIN: MOV SCON,#40H ;3ET SERIAL PORT FOR MODE 1 OPERATION
MOV THOD, #20H J3ET TIMER 1 TO AUTO RELOAD
MOV THIL,#0DDH ;LOAD RELOAD VALTUE FOR 1200 BAUD AT 16MHZ
MOV TCON, #40H ;3TART TIMER 1
CLR TI
LOOF: MOV SEUF,#04AH sTRANSHMIT AA HEX 0UT THE TXD LINE
JHNE TI,% JWAIT UNTIL TRANSMISSION COMPLETED
CLR TI JREADY TO TRANGHMIT ANOTHER
JHFP LOOF ;D0 IT ALL OVER AGAIN
END

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 7 of 8

;FILE: Mz.ASH

;THIS PROGRAM THRANSMITS THE HEX WVALUE AA REPETITEVELY ACROZZ THE SERIAL PORT
;0F A MC3e-51 IN MODE 2 AT A RATE OF 1/32 THE OSCILLATOR FREQUENCY

;DETAILS:

;MODE Z: 11 BITS ARE TRANSMITTED THROUGH TXID OR RECEIVED THROUGH ERXD.
;3TARTING WITH A 3TART EIT (0), & DATA BITS WITH THE LEA3T SIGNIFICANT EIT
$FIR3T, A PROGRAMMARLE 9th DATA BEIT, AND A4 STOF EIT (1). ON TRANSMIT, THE 2th
;DATA BIT, TES IN 3SCON, CAN EE ASSIGNED A VALUE OF 0 OR 1. FOR EXAMPLE THE
;PARITY BIT, F FROM PRW, COULD BE MOVED INTO TES. ON RECEIVE, THE NINTH DATA
:BIT GOE3 INTO BE& IN 3CO0N WHILE THE STOF BIT IS IGNOEED. (THE VALIDITY OF
:THE 3TOF EIT CAN BEE CHECEED WITH FRAMING ERRECOE DETECTION. THE EBAUD RATE I3
;PROGRAMMAELE TO EITHER 1/32 OR 1l/64d THE OSCILLATOR FEEQUENCY. IF 3HMOD1 BIT
:;IN THE PCON FEGISTER IS 0, THEN THE BAUD RATE IS5 1/64 THE OSCILLATOR
;FREQUENCY, IF 5MOD1 IS 1, THE THE BAUD RATE IS 1/3: THE OXCILLATOR FREQUENCY.

;
;
H

PCON EQU 87H

OFG 00H
JHP MATH
MATHN: MOV SCON,#50H 3ET UPF FOR MODE 2
MOV PCON,#50H :BAUD RATE EQUALSE 1/32 03C. FRE(Q
CLE TI ;READY TO TEANIMIT
LOOPp: MOV SEUF, #0AAH ;TRANGHIT ALH
INB TI,$ (WAIT FOR END OF TRANIMIZSION
CLE TI ;READY TO TEANIMIT
JHMFP LOOF ;D0 IT ALL AGATH
END

sFILE: M3TZ.A5H

;THIS PROGRAM TRANSHMITS THE HEX VALUE AL REPETITIVELY ACRO033 THE SERIAL PORT
;0F A MC3&-51 IN MODE 3 USING TIMER Z A% A BAUD RATE GENERATOR TO GENERATE A
;BAUD RATE OF 2400 BAUD AT 16MHZ WITH A PARITY EIT

JDETATLS:

JHODE 3: 11 BITS ARE TRANSMITTED THROUGH TXD OFR RECEIVED THROUGH ERXD
sTRANSHMIGSION STARTS WITH A 3TART BIT (0), EIGHT DATA BEIT3 WITH THE LEAST
JS3IGNIFICANT BIT FIRST, A PROGRAMMAELE 9TH DATA EIT, AND A 3TOP EIT (1l). MODE
;3 IS THE SAME AS MODE & EXCEFT THAT MODE 3 HAS A WVARIABLE EAUD RATE

RCAPZH EQU OCEH
RCAPZL EQU OCAH
TaCON EQU 0OCEH

ORG 00H
JHP MAIN
ALTH: How SCON, #0C0H ;3ET UP FOR JERIAL MODE 3
HOvV RCAPZH, #0FFH :LOAD HIGH BEYTE TO GEMERATE 2400 BAUD AT 16HMHZ
MOV RCAPZL, #30H ;LOAD LOW EYTE TO GENERATE 2400 BAUD AT 16MHZ
HOW TZCON, #14 ;TIMER. 2 BAUD RATE GEMEFRATOR AND 3TART TINER
MOV A, #0A40H ;PUT THE WALUE TO BE TRANSMITTED IN THE ACC
MOV C,P ;PARITY INFORMATION TO CARRY FLAG
MOV TB&,C sPARITY INFO FROM CARRY TO PROGRAMMAELE EIT ~*
; *NOTE: THE CONTENTS OF THE CARRY FLAG IN THE
; P3W MAY BE ALTERED
CLR TI ;FEADY TO TRANIHIT
LOOF: HOV SBUF A sTRANGHIT ALH
JNE TIL,§ ;WAIT UNTIL DONE TRANGMITTING
CLR TI ;READY TO TEANIZNIT
THMP LOOP ;D0 IT ALL OVER AGAIN
END

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

Intel(R) MCS(R) 51/251 Microcontrollers Page 8 of 8

JTHIS PROGRAM RECEIVES A VALUE ENTERING INTO THE SERIAL FORT PIN BXD AND PUTS
;THE DATA OUT TO PORT 1.

JDETATLS:

;THE PROGRAM I3 DESIGHED TO BE IN A CONTINUOUS NEVER ENDING LOOF UNTIL A BYTE
;0F DATA HAS BEEN COMPLETELY RECEIVED. THE LOOF IS EXITED BECAUSE OF THE
;OCCURANCE OF A 3ERIAL INTEFRUFT. AFTER THE INTERRUFT HAS BEEN SERVICED, TIHE
;PROGRAM GOES BACE INTOD IT'3 ENDLESS LOOF UNTIL ANOTHEER INTERRUFT OCCURS

;

;

PCON EQU 87H ;DEFINE REGISTER LOCATION

ORGz 00H

JHP MAIN

ORG 0Z3H $STARTING ADDEESS OF SERIAL INTEEREUPT

JTMF 3ERIAL_INT

MAIN: MOV SCON, #50H SET UP SERIAL PORT FOR MODE 1 WITH RECEIVE
(ENABLED
HOW THOD, #20H s3ET UF TIMER 1 A% AUTO-RELOAD S-BEIT TIMER
N0V TH1, #0DDH ;BAUD RATE EQUALS 2400 BAUD AT leolMhz
HOW PCON, #S0H ;3ET THE DOUELE EBAUD FATE EBIT
HOW IE, #350H ;ENAELE THE SERIAL FORT & GLOEAL INTERRUPFT EITS
HOW TCON, #40H ;3TART TIMER 1
CLR RI ;ENSURE THAT THE BECEIVE INTERRUPT FLAG I3
;CLEAR
LOOP: JHMP LOOF ;ENDLES3 LOOFP (UNLE33 INTERRUPT OCCURS)
SERIAL_INT: SERIAL INTERRUPT ROUTINE
CLRE RI ;CLEAR. THE EI EIT (SINCE WE ENOW THAT WA3 THE
;BIT THAT CAUSED THE INTERRUPT)
MOV P1, 3EUF JMOVE THE RECEIVEL DATA OUT TO PORT 1
RETI ;EXIT THE SERIAL INTERRUFT ROUTINE
END

SiteMap RSS Jobs Investor Relations PressRoom Contact Us
Termsof Use *Trademarks Privacy ©Intel Corporation

http://www.intel.com/design/mes51/applnots/2047.htm 12/31/2008

	Microcontroller
	Microcontroller
	BOOTSTRP
	SIO
	SERIAL PORT.pdf

