
; To set the baud rate, use this formula or set to 0 for auto detection
; baud_const = 256 - (crystal / (12 * 16 * baud))

.equ baud_const, 0 ;automatic baud rate detection
;.equ baud_const, 255 ;57600 baud w/ 11.0592 MHz
;.equ baud_const, 253 ;19200 baud w/ 11.0592 MHz
;.equ baud_const, 252 ;19200 baud w/ 14.7456 MHz
;.equ baud_const, 243 ;4808 baud w/ 12 MHz

;to do automatic baud rate detection, we assume the user will
;press the carriage return, which will cause this bit pattern
;to appear on port 3 pin 0 (CR = ascii code 13, assume 8N1 format)
;
; 0 1 0 1 1 0 0 0 0 1
; | | | |
; start bit----+ +--lsb msb--+ +----stop bit
;
;we'll start timer #1 in 16 bit mode at the transition between the
;start bit and the LSB and stop it between the MBS and stop bit.
;That will give approx the number of cpu cycles for 8 bits. Divide
;by 8 for one bit and by 16 since the built-in UART takes 16 timer
;overflows for each bit. We need to be careful about roundoff during
;division and the result has to be inverted since timer #1 counts up. Of
;course, timer #1 gets used in 8-bit auto reload mode for generating the
;built-in UART's baud rate once we know what the reload value should be.

autobaud:
 mov tmod, #0x11 ;get timer #1 ready for action (16 bit mode)
 mov tcon, #0x00
 clr a
 mov th1, a
 mov tl1, a
 mov a, #baud_const ;skip if user supplied baud rate constant
 jnz autoend
 mov a, 0x7B ;is there a value from a previous boot?
 xrl 0x7A, #01010101b
 xrl 0x79, #11001100b
 xrl 0x78, #00011101b
 cjne a, 0x7A, autob2
 cjne a, 0x79, autob2
 cjne a, 0x78, autob2
 sjmp autoend
autob2: jb p3.0, * ;wait for start bit
 jb p3.0, autob2
 jb p3.0, autob2 ; check it a few more times to make
 jb p3.0, autob2 ; sure we don't trigger on some noise
 jb p3.0, autob2
 jnb p3.0, * ;wait for bit #0 to begin
 setb tr1 ;and now we're timing it
 jb p3.0, * ;wait for bit #1 to begin
 jnb p3.0, * ;wait for bit #2 to begin
 jb p3.0, * ;wait for bit #4 to begin
 jnb p3.0, * ;wait for stop bit to begin
 clr tr1 ;stop timing
 mov a, tl1
 mov c, acc.6 ;save bit 6 for rounding up if necessary
 mov f0, c
 mov c, acc.7 ;grab bit 7... it's the lsb we want
 mov a, th1
 rlc a ;do the div by 128
 mov c, f0
 addc a, #0 ;round off if necessary
 cpl a ;invert since timer #1 will count up

Page 1 of 2

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\...

 inc a ;now acc has the correct reload value (I hope)
autoend:mov 0x7B, a
 mov 0x7A, a ;store the baud rate for next warm boot.
 mov 0x79, a
 mov 0x78, a
 xrl 0x7A, #01010101b
 xrl 0x79, #11001100b
 xrl 0x78, #00011101b
 mov th1, a
 mov tl1, a
 mov tmod, #0x21 ;set timer #1 for 8 bit auto-reload
 mov pcon, #0x80 ;configure built-in uart
 mov scon, #0x52
 setb tr1 ;start the baud rate timer
 mov r0, #0
 djnz r0, *
 djnz r0, *
 ret

Page 2 of 2

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\...

;Serial I/O routines using the 8051's built-in UART.
;Almost all of these should use CIN and COUT, so they
;could pretty easily be adapted to other devices which
;could have similar single character I/O routines,
;including the 8051's UART using interrupts and buffers
;in memory.

;Much of this code appears in PAULMON1... see the
;PAULMON1.EQU file for an example of how to use some
;of these routines.

 ;timer reload calculation
 ; baud_const = 256 - (crystal / (12 * 16 * baud))

.equ baud_const, 252 ;19200 baud w/ 15 MHz
;.equ baud_const, 243 ;4800 baud w/ 12 MHz

;---;
; ;
; Subroutines for serial I/O ;
; ;
;---;

cin: jnb ri, cin
 clr ri
 mov a, sbuf
 ret

cout: jnb ti, cout
 clr ti
 mov sbuf, a
 ret

newline:push acc
 mov a, #13
 acall cout
 mov a, #10
 acall cout
 pop acc
 ret

 ;get 2 digit hex number from serial port
 ; c = set if ESC pressed, clear otherwise
 ; psw.5 = set if return w/ no input, clear otherwise
ghex:
ghex8: clr psw.5
ghex8c:
 acall cin ;get first digit
 acall upper
 cjne a, #27, ghex8f
ghex8d: setb c
 clr a
 ret
ghex8f: cjne a, #13, ghex8h
 setb psw.5
 clr c
 clr a

Page 1 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 ret
ghex8h: mov r2, a
 acall asc2hex
 jc ghex8c
 xch a, r2 ;r2 will hold hex value of 1st digit
 acall cout
ghex8j:
 acall cin ;get second digit
 acall upper
 cjne a, #27, ghex8k
 sjmp ghex8d
ghex8k: cjne a, #13, ghex8m
 mov a, r2
 clr c
 ret
ghex8m: cjne a, #8, ghex8p
ghex8n: acall cout
 sjmp ghex8c
ghex8p: cjne a, #21, ghex8q
 sjmp ghex8n
ghex8q: mov r3, a
 acall asc2hex
 jc ghex8j
 xch a, r3
 acall cout
 mov a, r2
 swap a
 orl a, r3
 clr c
 ret

 ;carry set if esc pressed
 ;psw.5 set if return pressed w/ no input
ghex16:
 mov r2, #0 ;start out with 0
 mov r3, #0
 mov r4, #4 ;number of digits left
 clr psw.5

ghex16c:
 acall cin
 acall upper
 cjne a, #27, ghex16d
 setb c ;handle esc key
 clr a
 mov dph, a
 mov dpl, a
 ret
ghex16d:cjne a, #8, ghex16f
 sjmp ghex16k
ghex16f:cjne a, #127, ghex16g ;handle backspace
ghex16k:cjne r4, #4, ghex16e ;have they entered anything yet?
 sjmp ghex16c
ghex16e:acall cout
 acall ghex16y
 inc r4
 sjmp ghex16c

Page 2 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

ghex16g:cjne a, #13, ghex16i ;return key
 mov dph, r3
 mov dpl, r2
 cjne r4, #4, ghex16h
 clr a
 mov dph, a
 mov dpl, a
 setb psw.5
ghex16h:clr c
 ret
ghex16i:mov r5, a ;keep copy of original keystroke
 acall asc2hex
 jc ghex16c
 xch a, r5
 lcall cout
 mov a, r5
 push acc
 acall ghex16x
 pop acc
 add a, r2
 mov r2, a
 clr a
 addc a, r3
 mov r3, a
 djnz r4, ghex16c
 clr c
 mov dpl, r2
 mov dph, r3
 ret

ghex16x: ;multiply r3-r2 by 16 (shift left by 4)
 mov a, r3
 swap a
 anl a, #11110000b
 mov r3, a
 mov a, r2
 swap a
 anl a, #00001111b
 orl a, r3
 mov r3, a
 mov a, r2
 swap a
 anl a, #11110000b
 mov r2, a
 ret

ghex16y: ;divide r3-r2 by 16 (shift right by 4)
 mov a, r2
 swap a
 anl a, #00001111b
 mov r2, a
 mov a, r3
 swap a
 anl a, #11110000b
 orl a, r2
 mov r2, a
 mov a, r3
 swap a
 anl a, #00001111b
 mov r3, a

Page 3 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 ret

asc2hex: ;carry set if invalid input
 clr c
 push b
 subb a,#'0'
 mov b,a
 subb a,#10
 jc a2h1
 mov a,b
 subb a,#7
 mov b,a
a2h1: mov a,b
 clr c
 anl a,#11110000b ;just in case
 jz a2h2
 setb c
a2h2: mov a,b
 pop b
 ret

phex:
phex8:
 push acc
 swap a
 anl a, #15
 add a, #246
 jnc phex_b
 add a, #7
phex_b: add a, #58
 acall cout
 pop acc
phex1: push acc
 anl a, #15
 add a, #246
 jnc phex_c
 add a, #7
phex_c: add a, #58
 acall cout
 pop acc
 ret

PHEX16:
 PUSH ACC
 MOV A,DPH
 ACALL PHEX
 MOV A,DPL
 ACALL PHEX
 POP ACC
 RET

PSTR: ;print string @DPTR
 PUSH ACC
PSTR1: CLR A
 MOVC A,@A+DPTR
 JZ PSTR2

Page 4 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 mov c, acc.7
 anl a, #01111111b
 acall cout
 Jc pstr2
 inc dptr
 SJMP PSTR1
PSTR2: POP ACC
 RET

;first we initialize all the registers we can, setting up
;for serial communication.

poweron:

 mov sp, #0x30
 clr psw.3 ;set for register bank 0 (init needs it)
 clr psw.4
 orl PCON,#10000000b ; set double baud rate
 MOV TMOD,#00010001b
 MOV SCON,#01010000b ; Set Serial for mode 1 &
 ; Enable reception
 ORL TCON,#01010010b ; Start timer 1 both timer

 mov a, #baud_const
 mov th1, a

 setb ti ;ti is normally set in this program
 clr ri ;ri is normally cleared

 ;jump to main program from here...

pint8u: ;prints the unsigned 8 bit value in Acc in base 10
 push b
 push acc
 sjmp pint8b

pint8: ;prints the signed 8 bit value in Acc in base 10
 push b
 push acc
 jnb acc.7, pint8b
 mov a, #'-'
 lcall cout
 pop acc
 push acc
 cpl a
 add a, #1
pint8b: mov b, #100
 div ab
 setb f0
 jz pint8c
 clr f0
 add a, #'0'
 lcall cout

Page 5 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

pint8c: mov a, b
 mov b, #10
 div ab
 jnb f0, pint8d
 jz pint8e
pint8d: add a, #'0'
 lcall cout
pint8e: mov a, b
 add a, #'0'
 lcall cout
 pop acc
 pop b
 ret

 ;print 16 bit unsigned integer in DPTR, using base 10.
pint16u: ;warning, destroys r2, r3, r4, r5, psw.5
 push acc
 mov a, r0
 push acc
 clr psw.5
 mov r2, dpl
 mov r3, dph

pint16a:mov r4, #16 ;ten-thousands digit
 mov r5, #39
 acall pint16x
 jz pint16b
 add a, #'0'
 lcall cout
 setb psw.5

pint16b:mov r4, #232 ;thousands digit
 mov r5, #3
 acall pint16x
 jnz pint16c
 jnb psw.5, pint16d
pint16c:add a, #'0'
 lcall cout
 setb psw.5

pint16d:mov r4, #100 ;hundreds digit
 mov r5, #0
 acall pint16x
 jnz pint16e
 jnb psw.5, pint16f
pint16e:add a, #'0'
 lcall cout
 setb psw.5

pint16f:mov a, r2 ;tens digit
 mov r3, b
 mov b, #10
 div ab
 jnz pint16g
 jnb psw.5, pint16h
pint16g:add a, #'0'

Page 6 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 lcall cout

pint16h:mov a, b ;and finally the ones digit
 mov b, r3
 add a, #'0'
 lcall cout

 pop acc
 mov r0, a
 pop acc
 ret

;ok, it's a cpu hog and a nasty way to divide, but this code
;requires only 21 bytes! Divides r2-r3 by r4-r5 and leaves
;quotient in r2-r3 and returns remainder in acc. If Intel
;had made a proper divide, then this would be much easier.

pint16x:mov r0, #0
pint16y:inc r0
 clr c
 mov a, r2
 subb a, r4
 mov r2, a
 mov a, r3
 subb a, r5
 mov r3, a
 jnc pint16y
 dec r0
 mov a, r2
 add a, r4
 mov r2, a
 mov a, r3
 addc a, r5
 mov r3, a
 mov a, r0
 ret

upper: ;converts the ascii code in Acc to uppercase, if it is lowercase
 push acc
 clr c
 subb a, #97
 jc upper2 ;is it a lowercase character
 subb a, #26
 jnc upper2
 pop acc
 add a, #224 ;convert to uppercase
 ret
upper2: pop acc ;don't change anything
 ret

pbin: mov r0, #8
pbin2: rlc a
 mov f0, c
 push acc
 mov a, #'0'
 addc a, #0

Page 7 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 lcall cout
 pop acc
 mov c, f0
 djnz r0, pbin2
 rlc a
 ret

lenstr: mov r0, #0 ;returns length of a string in r0
 push acc
lenstr1:clr a
 movc a,@a+dptr
 jz lenstr2
 mov c,acc.7
 inc r0
 Jc lenstr2
 inc dptr
 sjmp lenstr1
lenstr2:pop acc
 ret

.equ str_buf, 0x20 ;16 byte buffer
.equ max_str_len, 19

getstr: ;get a string and store in an internal ram buffer
 ; str_buf = beginning of the buffer
 ; max_str_len = max number of char to receive
 ; (buffer must be one larger for null termination)

 mov r0, #str_buf
gstrz: mov @r0, #0 ;fill buffer with zeros
 inc r0
 cjne r0, #(str_buf+max_str_len+1), gstrz
 mov r0, #str_buf
gstr_in:lcall cin
 lcall isascii
 jnc gstr_ctrl
 cjne r0, #(str_buf+max_str_len), gstradd
 sjmp gstr_in
gstradd:lcall cout
 mov @r0, a
 inc r0
 sjmp gstr_in
gstr_ctrl:
 cjne a, #13, gstrc2 ;carriage return
 clr a
 mov @r0, a
 ret
gstrc2: cjne a, #8, gstrc3 ;backspace
gstrbk: cjne r0, #str_buf, gstrbk2
 sjmp gstr_in
gstrbk2:mov a, #8
 lcall cout
 mov a, #' '
 lcall cout
 mov a, #8
 lcall cout
 dec r0
 sjmp gstr_in

Page 8 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

gstrc3: cjne a, #127, gstrc4 ;delete
 sjmp gstrbk
gstrc4:
 sjmp gstr_in ;ignore all others

pstrbuf: ;print the string in the internal ram buffer
 mov r0, #str_buf
pstrbuf2:
 mov a, @r0
 jz pstrbuf3
 lcall cout
 inc r0
 sjmp pstrbuf2
pstrbuf3:
 ret

 ;get unsigned integer input to acc
gint8u:
 mov r0, #0 ;r0 holds sum so far
 mov r1, #0 ;r1 counts number of characters
gi8_in: lcall cin
 mov r2, a ;r2 is temp holding space for input char
 clr c
 subb a, #'0'
 jc gi8_ctrl
 subb a, #10
 jnc gi8_ctrl
 mov a, r0
 mov b, #10
 mul ab
 xch a, b
 jnz gi8_in
 mov a, r2
 clr c
 subb a, #'0'
 add a, b
 jc gi8_in
 mov r0, a
 mov a, r2
 lcall cout
 inc r1
 sjmp gi8_in
gi8_ctrl:
 mov a, r2
 cjne a, #13, gi8c2
 mov a, r0
 ret
gi8c2: cjne a, #8, gi8c3
gi8bk: cjne r1, #0, gi8bk2
 sjmp gi8_in
gi8bk2: mov a, #8
 lcall cout
 mov a, #' '

Page 9 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

 lcall cout
 mov a, #8
 lcall cout
 mov a, r0
 mov b, #10
 div ab
 mov r0, a
 sjmp gi8_in
gi8c3: cjne a, #127, gi8c4
 sjmp gi8bk
gi8c4:
 sjmp gi8_in

isascii: ;is acc an ascii char, c=1 if yes, c=0 if no
 push acc
 cjne a, #0x7F, isasc2
 sjmp isasc_no
isasc2: anl a, #10000000b
 jnz isasc_no
 pop acc
 push acc
 anl a, #11100000b
 jz isasc_no
 setb c
 pop acc
 ret
isasc_no:
 clr c
 pop acc
 ret

Page 10 of 10

1/16/2010mhtml:file://D:\SCHEME_NOI\Home_Remote\Software\Microcontroller\MONITOR\De_...

;===
======

; Bootstrap Loader for Hexadecimal Files
; written by G. Goodhue, Signetics Co.

; This program downloading a hexadecimal program file over an
asynchronous
; serial link to a code RAM in an 80C51 system. The downloaded code may
then
; be executed as the main program for the system. This technique may be
used
; in a system that normally connects to a host PC so that the code may
come
; from a disk and thus be easily updated. The system RAM must be wired
to the
; 80C51 system so that it appears as both data and program memory (wire
the
; RAM normally, but use the logical AND of RD and PSEN for the output
enable.)

; To use the bootstrap program, an Intel Hex file is sent through the
serial
; port in 8-N-1 format at 9600 baud. The baud rate and format may be
altered
; by making small changes in the serial port setup routine (SerStart).

; Note that there is no hardware handshaking (e.g. RTS/CTS or XON/XOFF)
; implemented between the host and the bootstrap system. This was done
to keep
; the protocol between the two systems as simple as possible.

; Since the bootstrap program does not echo the data file, there is no
chance
; of an overrun unless the 80C51 is running very slowly and/or the
; communication is very fast. An 80C51 running at 11.0592 MHz (the most
; commonly used frequency in systems with serial communication) will be
able
; to easily keep up with 38.4K baud communication without handshaking.

;===
======

; The download protocol for this program is as follows:

; - When the bootstrap program starts up, it sends a prompt character
("=")
; up the serial link to the host.

; - The host may then send the hexadecimal program file down the serial
link.
; At any time, the host may send an escape character (1B hex) to
abort and
; restart the download process from scratch, beginning from the "="
prompt.
; This procedure may be used to restart if a download error occurs.

; - At the end of a hex file download, a colon (":") prompt is
returned. If

; an error or other suspicious circumstance occurred, a flag value
will
; also be returned as shown below. The flag is a bit map of possible
; conditions and so may represent more than one problem. If an error
; occurs, the bootstrap program will refuse to execute the downloaded
; program.

; Exception codes:
; 01 - non-hexadecimal characters found embedded in a data line.
; 02 - bad record type found.
; 04 - incorrect line checksum found.
; 08 - no data found.
; 10 - incremented address overflowed back to zero.
; 20 - RAM data write did not verify correctly.

; - If a download error occurs, the download may be retried by first
sending
; an escape character. Until the escape is received, the bootstrap
program
; will refuse to accept any data and will echo a question mark ("?")
for
; any character sent.

; - After a valid file download, the bootstrap program will send a
message
; containing the file checksum. This is the arithmetic sum of all of
the
; DATA bytes (not addresses, record types, etc.) in the file,
truncated to
; 16 bits. This checksum appears in parentheses: "(abcd)". Program
; execution may then be started by telling the bootstrap program the
; correct starting address. The format for this is to send a slash
("/")
; followed by the address in ASCII hexadecimal, followed by a
carriage
; return. Example: "/8A31<CR>"

; - If the address is accepted, an at sign ("@") is returned before
executing
; the jump to the downloaded file.

; The bootstrap loader can be configured to re-map interrupt vectors to
the
; downloaded program if jumps to the correct addresses are set up. For
; instance, if the program RAM in the system where this program is to be
used
; starts at 8000 hexadecimal, the re-mapped interrupts may begin at 8003
for
; external interrupt 0, etc.

;===
======

$Title(Bootstrap Loader for Hexadecimal Files)
$Date(04-13-92)
$MOD51

;===
======
; Definitions
;===
======

LF EQU 0Ah ; Line Feed character.
CR EQU 0Dh ; Carriage Return character.
ESC EQU 1Bh ; Escape character.
StartChar EQU ':' ; Line start character for hex
file.
Slash EQU '/' ; Go command character.
Skip EQU 13 ; Value for "Skip" state.

Ch DATA 0Fh ; Last character received.
State DATA 10h ; Identifies the state in
process.
DataByte DATA 11h ; Last data byte received.
ByteCount DATA 12h ; Data byte count from current
line.
HighAddr DATA 13h ; High and low address bytes from
the
LowAddr DATA 14h ; current data line.
RecType DATA 15h ; Line record type for this line.
ChkSum DATA 16h ; Calculated checksum received.
HASave DATA 17h ; Saves the high and low address
bytes
LASave DATA 18h ; from the last data line.
FilChkHi DATA 19h ; File checksum high byte.
FilChkLo DATA 1Ah ; File checksum low byte.

Flags DATA 20h ; State condition flags.
HexFlag BIT Flags.0 ; Hex character found.
EndFlag BIT Flags.1 ; End record found.
DoneFlag BIT Flags.2 ; Processing done (end record or
some
 ; kind of error.

EFlags DATA 21h ; Exception flags.
ErrFlag1 BIT EFlags.0 ; Non-hex character embedded in
data.
ErrFlag2 BIT EFlags.1 ; Bad record type.
ErrFlag3 BIT EFlags.2 ; Bad line checksum.
ErrFlag4 BIT EFlags.3 ; No data found.
ErrFlag5 BIT EFlags.4 ; Incremented address overflow.
ErrFlag6 BIT EFlags.5 ; Data storage verify error.

DatSkipFlag BIT Flags.3 ; Any data found should be
ignored.

;===
======
; Reset and Interrupt Vectors
;===
======

; The following are dummy labels for re-mapped interrupt vectors. The

; addresses should be changed to match the memory map of the target
system.

ExInt0 EQU 8003h ; Remap address for ext interrupt
0.
T0Int EQU 800Bh ; Timer 0 interrupt.
ExInt1 EQU 8013h ; External interrupt 1.
T1Int EQU 801Bh ; Timer 1 interrupt.
SerInt EQU 8023h ; Serial port interrupt.

 ORG 0000h
 LJMP Start ; Go to the downloader program.

; The following are intended to allow re-mapping the interrupt vectors
to the
; users downloaded program. The jump addresses should be adjusted to
reflect
; the memory mapping used in the actual application.

; Other (or different) interrupt vectors may need to be added if the
target
; processor is not an 80C51.

 ORG 0003h
; LJMP ExInt0 ; External interrupt 0.
 RETI

 ORG 000Bh
; LJMP T0Int ; Timer 0 interrupt.
 RETI

 ORG 0013h
; LJMP ExInt1 ; External interrupt 1.
 RETI

 ORG 001Bh
; LJMP T1Int ; Timer 1 interrupt.
 RETI

 ORG 0023h
; LJMP SerInt ; Serial port interrupt.
 RETI

;===
======
; Reset and Interrupt Vectors
;===
======

Start: MOV IE,#0 ; Turn off all interrupts.
 MOV SP,#5Fh ; Start stack near top of '51
RAM.
 ACALL SerStart ; Setup and start serial port.
 ACALL CRLF ; Send a prompt that we are here.
 MOV A,#'=' ; "<CRLF> ="
 ACALL PutChar

 ACALL HexIn ; Try to read hex file from
serial port.
 ACALL ErrPrt ; Send a message for any errors
or
 ; warnings that were noted.
 MOV A,EFlags ; We want to get stuck if a fatal
 JZ HexOK ; error occurred.

ErrLoop: MOV A,#'?' ; Send a prompt to confirm that
we
 ACALL PutChar ; are 'stuck'. " ? "
 ACALL GetChar ; Wait for escape char to flag
reload.
 SJMP ErrLoop

HexOK: MOV EFlags,#0 ; Clear errors flag in case we
re-try.
 ACALL GetChar ; Look for GO command.
 CJNE A,#Slash,HexOK ; Ignore other characters
received.

 ACALL GetByte ; Get the GO high address byte.
 JB ErrFlag1,HexOK ; If non-hex char found, try
again.
 MOV HighAddr,DataByte ; Save upper GO address byte.

 ACALL GetByte ; Get the GO low address byte.
 JB ErrFlag1,HexOK ; If non-hex char found, try
again.
 MOV LowAddr,DataByte ; Save the lower GO address byte.

 ACALL GetChar ; Look for CR.
 CJNE A,#CR,HexOK ; Re-try if CR not there.

; All conditions are met, so hope the data file and the GO address are
all
; correct, because now we're committed.

 MOV A,#'@' ; Send confirmation to GO. " @ "
 ACALL PutChar
 JNB TI,$; Wait for completion before
GOing.

 PUSH LowAddr ; Put the GO address on the
stack,
 PUSH HighAddr ; so we can Return to it.
 RET ; Finally, go execute the user
program!

;===
======
; Hexadecimal File Input Routine
;===
======

HexIn: CLR A ; Clear out some variables.
 MOV State,A
 MOV Flags,A
 MOV HighAddr,A

 MOV LowAddr,A
 MOV HASave,A
 MOV LASave,A
 MOV ChkSum,A
 MOV FilChkHi,A
 MOV FilChkLo,A
 MOV EFlags,A
 SETB ErrFlag4 ; Start with a 'no data'
condition.

StateLoop: ACALL GetChar ; Get a character for processing.
 ACALL AscHex ; Convert ASCII-hex character to
hex.
 MOV Ch,A ; Save result for later.
 ACALL GoState ; Go find the next state based on
 ; this char.
 JNB DoneFlag,StateLoop ; Repeat until done or
terminated.

 ACALL PutChar ; Send the file checksum back as
 MOV A,#'(' ; confirmation. " (abcd) "
 ACALL PutChar
 MOV A,FilChkHi
 ACALL PrByte
 MOV A,FilChkLo
 ACALL PrByte
 MOV A,#')'
 ACALL PutChar
 ACALL CRLF
 RET ; Exit to main program.

; Find and execute the state routine pointed to by "State".

GoState: MOV A,State ; Get current state.
 ANL A,#0Fh ; Insure branch is within table
range.
 RL A ; Adjust offset for 2 byte insts.
 MOV DPTR,#StateTable
 JMP @A+DPTR ; Go to appropriate state.

StateTable: AJMP StWait ; 0 - Wait for start.
 AJMP StLeft ; 1 - First nibble of count.
 AJMP StGetCnt ; 2 - Get count.
 AJMP StLeft ; 3 - First nibble of address
byte 1.
 AJMP StGetAd1 ; 4 - Get address byte 1.
 AJMP StLeft ; 5 - First nibble of address
byte 2.
 AJMP StGetAd2 ; 6 - Get address byte 2.
 AJMP StLeft ; 7 - First nibble of record
type.
 AJMP StGetRec ; 8 - Get record type.
 AJMP StLeft ; 9 - First nibble of data byte.
 AJMP StGetDat ; 10 - Get data byte.
 AJMP StLeft ; 11 - First nibble of checksum.
 AJMP StGetChk ; 12 - Get checksum.
 AJMP StSkip ; 13 - Skip data after error
condition.
 AJMP BadState ; 14 - Should never get here.

 AJMP BadState ; 15 - " " " "

; This state is used to wait for a line start character. Any other
characters
; received prior to the line start are simply ignored.

StWait: MOV A,Ch ; Retrieve input character.
 CJNE A,#StartChar,SWEX ; Check for line start.
 INC State ; Received line start.
SWEX: RET

; Process the first nibble of any hex byte.

StLeft: MOV A,Ch ; Retrieve input character.
 JNB HexFlag,SLERR ; Check for hex character.
 ANL A,#0Fh ; Isolate one nibble.
 SWAP A ; Move nibble too upper location.
 MOV DataByte,A ; Save left/upper nibble.
 INC State ; Go to next state.
 RET ; Return to state loop.

SLERR: SETB ErrFlag1 ; Error - non-hex character
found.
 SETB DoneFlag ; File considered corrupt. Tell
main.
 RET

; Process the second nibble of any hex byte.

StRight: MOV A,Ch ; Retrieve input character.
 JNB HexFlag,SRERR ; Check for hex character.
 ANL A,#0Fh ; Isolate one nibble.
 ORL A,DataByte ; Complete one byte.
 MOV DataByte,A ; Save data byte.
 ADD A,ChkSum ; Update line checksum,
 MOV ChkSum,A ; and save.
 RET ; Return to state loop.

SRERR: SETB ErrFlag1 ; Error - non-hex character
found.
 SETB DoneFlag ; File considered corrupt. Tell
main.
 RET

; Get data byte count for line.

StGetCnt: ACALL StRight ; Complete the data count byte.
 MOV A,DataByte
 MOV ByteCount,A
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get upper address byte for line.

StGetAd1: ACALL StRight ; Complete the upper address

byte.
 MOV A,DataByte
 MOV HighAddr,A ; Save new high address.
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get lower address byte for line.

StGetAd2: ACALL StRight ; Complete the lower address
byte.
 MOV A,DataByte
 MOV LowAddr,A ; Save new low address.
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get record type for line.

StGetRec: ACALL StRight ; Complete the record type byte.
 MOV A,DataByte
 MOV RecType,A ; Get record type.
 JZ SGRDat ; This is a data record.
 CJNE A,#1,SGRErr ; Check for end record.
 SETB EndFlag ; This is an end record.
 SETB DatSkipFlag ; Ignore data embedded in end
record.
 MOV State,#11 ; Go to checksum for end record.
 SJMP SGREX

SGRDat: INC State ; Go to next state.
SGREX: RET ; Return to state loop.

SGRErr: SETB ErrFlag2 ; Error, bad record type.
 SETB DoneFlag ; File considered corrupt. Tell
main.
 RET

; Get a data byte.

StGetDat: ACALL StRight ; Complete the data byte.
 JB DatSkipFlag,SGD1 ; Don't process the data if the
skip
 ; flag is on.
 ACALL Store ; Store data byte in memory.

 MOV A,DataByte ; Update the file checksum,
 ADD A,FilChkLo ; which is a two-byte summation
of
 MOV FilChkLo,A ; all data bytes.
 CLR A
 ADDC A,FilChkHi
 MOV FilChkHi,A
 MOV A,DataByte
SGD1: DJNZ ByteCount,SGDEX ; Last data byte?
 INC State ; Done with data, go to next
state.
 SJMP SGDEX2

SGDEX: DEC State ; Set up state for next data
byte.
SGDEX2: RET ; Return to state loop.

; Get checksum.

StGetChk: ACALL StRight ; Complete the checksum byte.
 JNB EndFlag,SGC1 ; Check for an end record.
 SETB DoneFlag ; If this was an end record,
 SJMP SGCEX ; we are done.

SGC1: MOV A,ChkSum ; Get calculated checksum.
 JNZ SGCErr ; Result should be zero.
 MOV ChkSum,#0 ; Preset checksum for next line.
 MOV State,#0 ; Line done, go back to wait
state.
 MOV LASave,LowAddr ; Save address byte from this
line for
 MOV HASave,HighAddr ; later check.
SGCEX: RET ; Return to state loop.

SGCErr: SETB ErrFlag3 ; Line checksum error.
 SETB DoneFlag ; File considered corrupt. Tell
main.
 RET

; This state used to skip through any additional data sent, ignoring it.

StSkip: RET ; Return to state loop.

; A place to go if an illegal state comes up somehow.

BadState: MOV State,#Skip ; If we get here, something very
bad
 RET ; happened, so return to state
loop.

; Store - Save data byte in external RAM at specified address.

Store: MOV DPH,HighAddr ; Set up external RAM address in
DPTR.
 MOV DPL,LowAddr
 MOV A,DataByte
 MOVX @DPTR,A ; Store the data.

 MOVX A,@DPTR ; Read back data for integrity
check.
 CJNE A,DataByte,StoreErr ; Is read back OK?

 CLR ErrFlag4 ; Show that we've found some
data.
 INC DPTR ; Advance to the next addr in
sequence.
 MOV HighAddr,DPH ; Save the new address
 MOV LowAddr,DPL
 CLR A

 CJNE A,HighAddr,StoreEx ; Check for address overflow
 CJNE A,LowAddr,StoreEx ; (both bytes are 0).
 SETB ErrFlag5 ; Set warning for address
overflow.
StoreEx: RET

StoreErr: SETB ErrFlag6 ; Data storage verify error.
 SETB DoneFlag ; File considered corrupt. Tell
main.
 RET

;===
======
; Subroutines
;===
======

; Subroutine summary:

; SerStart - Serial port setup and start.
; GetChar - Get a character from the serial port for processing.
; GetByte - Get a hex byte from the serial port for processing.
; PutChar - Output a character to the serial port.
; AscHex - See if char in ACC is ASCII-hex and if so convert to hex
nibble.
; HexAsc - Convert a hexadecimal nibble to its ASCII character
equivalent.
; ErrPrt - Return any error codes to our host.
; CRLF - output a carriage return / line feed pair to the serial
port.
; PrByte - Send a byte out the serial port in ASCII hexadecimal
format.

; SerStart - Serial port setup and start.

SerStart: MOV A,PCON ; Make sure SMOD is off.
 CLR ACC.7
 MOV PCON,A
 MOV TH1,#0FDh ; Set up timer 1.
 MOV TL0,#0FDh
 MOV TMOD,#20h
 MOV TCON,#40h
 MOV SCON,#52h ; Set up serial port.
 RET

; GetByte - Get a hex byte from the serial port for processing.

GetByte: ACALL GetChar ; Get first character of byte.
 ACALL AscHex ; Convert to hex.
 MOV Ch,A ; Save result for later.
 ACALL StLeft ; Process as top nibble of a hex
byte.
 ACALL GetChar ; Get second character of byte.
 ACALL AscHex ; Convert to hex.
 MOV Ch,A ; Save result for later.
 ACALL StRight ; Process as bottom nibble of hex

byte.
 RET

; GetChar - Get a character from the serial port for processing.

GetChar: JNB RI,$; Wait for receiver flag.
 CLR RI ; Clear receiver flag.
 MOV A,SBUF ; Read character.
 CJNE A,#ESC,GCEX ; Re-start immediately if Escape
char.
 LJMP Start
GCEX: RET

; PutChar - Output a character to the serial port.

PutChar: JNB TI,$; Wait for transmitter flag.
 CLR TI ; Clear transmitter flag.
 MOV SBUF,A ; Send character.
 RET

; AscHex - See if char in ACC is ASCII-hex and if so convert to a hex
nibble.
; Returns nibble in A, HexFlag tells if char was really hex. The ACC
is not
; altered if the character is not ASCII hex. Upper and lower case
letters
; are recognized.

AscHex: CJNE A,#'0',AH1 ; Test for ASCII numbers.
AH1: JC AHBad ; Is character is less than a
'0'?
 CJNE A,#'9'+1,AH2 ; Test value range.
AH2: JC AHVal09 ; Is character is between '0' and
'9'?

 CJNE A,#'A',AH3 ; Test for upper case hex
letters.
AH3: JC AHBad ; Is character is less than an
'A'?
 CJNE A,#'F'+1,AH4 ; Test value range.
AH4: JC AHValAF ; Is character is between 'A' and
'F'?

 CJNE A,#'a',AH5 ; Test for lower case hex
letters.
AH5: JC AHBad ; Is character is less than an
'a'?
 CJNE A,#'f'+1,AH6 ; Test value range.
AH6: JNC AHBad ; Is character is between 'a' and
'f'?
 CLR C
 SUBB A,#27h ; Pre-adjust character to get a
value.
 SJMP AHVal09 ; Now treat as a number.

AHBad: CLR HexFlag ; Flag char as non-hex, don't
alter.

 SJMP AHEX ; Exit
AHValAF: CLR C
 SUBB A,#7 ; Pre-adjust character to get a
value.
AHVal09: CLR C
 SUBB A,#'0' ; Adjust character to get a
value.
 SETB HexFlag ; Flag character as 'good' hex.
AHEX: RET

; HexAsc - Convert a hexadecimal nibble to its ASCII character
equivalent.

HexAsc: ANL A,#0Fh ; Make sure we're working with
only
 ; one nibble.
 CJNE A,#0Ah,HA1 ; Test value range.
HA1: JC HAVal09 ; Value is 0 to 9.
 ADD A,#7 ; Value is A to F, extra
adjustment.
HAVal09: ADD A,#'0' ; Adjust value to ASCII hex.
 RET

; ErrPrt - Return an error code to our host.

ErrPrt: MOV A,#':' ; First, send a prompt that we
are
 CALL PutChar ; still here.
 MOV A,EFlags ; Next, print the error flag
value if
 JZ ErrPrtEx ; it is not 0.
 CALL PrByte
ErrPrtEx: RET

; CRLF - output a carriage return / line feed pair to the serial port.

CRLF: MOV A,#CR
 CALL PutChar
 MOV A,#LF
 CALL PutChar
 RET

; PrByte - Send a byte out the serial port in ASCII hexadecimal format.

PrByte: PUSH ACC ; Print ACC contents as ASCII
hex.
 SWAP A
 CALL HexAsc ; Print upper nibble.
 CALL PutChar
 POP ACC
 CALL HexAsc ; Print lower nibble.
 CALL PutChar
 RET

;===

======

 END

*
* "Bit-bang" serial I/O functions for the 8051.
*
* These routines transmit and receive serial data using two general
* I/O pins, in 8 bit, No parity, 1 stop bit format. They are useful
* for performing serial I/O on 8051 derivatives not having an
* internal UART, or for implementing a second serial channel.
*
* Dave Dunfield - May 17, 1994
*
* NOTE that R0 and R1 are used by the functions. You may wish to
* add PUSH/POP instructions to save/restore these registers.
*
TXD EQU P1.0 Transmit on this pin
RXD EQU P1.1 Receive on this pin
* The serial baud rate is determined by the processor crystal, and
* this constant which is calculated as: (((crystal/baud)/12) - 5) / 2
BITTIM EQU 45 (((11059200/9600)/12) - 5) / 2
*
* Transmit character in A via TXD line
*
putc CLR TXD Drop line for start bit

MOV R0,#BITTIM Wait full bit-time
DJNZ R0,* For START bit
MOV R1,#8 Send 8 bits

putc1 RRC A Move next bit into carry
MOV TXD,C Write next bit
MOV R0,#BITTIM Wait full bit-time
DJNZ R0,* For DATA bit
DJNZ R1,putc1 write 8 bits
SETB TXD Set line high
RRC A Restore ACC contents
MOV R0,#BITTIM Wait full bit-time
DJNZ R0,* For STOP bit
RET

*
* Receive a character from the RXD line and return in A
*
getc JB RXD,* Wait for start bit

MOV R0,#BITTIM/2 Wait 1/2 bit-time
DJNZ R0,* To sample in middle
JB RXD,getc Insure valid
MOV R1,#8 Read 8 bits

getc1 MOV R0,#BITTIM Wait full bit-time
DJNZ R0,* For DATA bit
MOV C,RXD Read bit
RRC A Shift it into ACC
DJNZ R1,getc1 read 8 bits
RET go home

Products

Embedded &
Communications
Processors
Chipsets
Boards
Development Kits
Solid-State Drives and
Caching
Storage
Ethernet Controllers
Desktop Adapters
Server Adapters
Wireless Networking

Embedded & Flash Memory Microcontrollers Intel® MCS® 51/251 MCS 51
On-Chip UART

A Simplified Users Guide

Overview
The MCS®-51 family contains a flexible set of microcontrollers. These 8-bit embedded
controllers have different features such as on-chip program memory, data RAM and
some even have integrated A/D converters. One feature that all of the microcontrollers
in the MCS®-51 family have in common is an integrated UART (Universal
Asynchronous Receiver Transmitter).

This guide has been designed so that any programmer with basic microcontroller
experience can learn how to use the general features of the on-chip UART in a MCS®-

Contents Page
Overview
Serial Port Modes 3
Baud Rate Generation Tables
Timer 2 4
Timer 1 5
Why are some baud rates missing from the table? 6
Some common problems and questions when
trying to set up the serial port in the MCS®51
Family.
What is the purpose of using interrupts and/or polling in
serial applications? 6

How does the serial interrupt and polling work? 7
When should I use polling or interrupts? 8
Common Problems
I am viewing data on an oscilloscope and I am not seeing
the data transmitted; I see other data instead. Why? 8

I am moving data into SBUF, all my registers are
configured for serial communications, nothing is being
transmitted. Why?

8

All of my registers are set up correctly, but when I receive
data, the microcontroller never vectors to my interrupt
routine. Why?

8

I am trying to transmit data and all I see on my
oscilloscope is a square wave coming out of the Txd pin.
Why?

8

I am receiving data and I move it to another register and
read it. The value that I am reading is not the data that I
received. Why?

8

Sample Programs
M0.ASM 9
M1T1.ASM 10
M2.ASM 11
M3T2.ASM 12
M1INT.ASM 13

Page 1 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

51 microcontroller. This document has been created and designed in response to
repeated inquires on the usage of the serial port. Working examples have been included
and explained to ease the learning process.

The serial port can operate in 4 modes:
Mode 0: TXD outputs the shift clock. In this mode, 8 bits are transmitted and received
by the same pin, RXD. The data is transmitted starting with the least significant bit
first, and ending with the most significant bit. The baud rate is fixed at 1/12 the
oscillator frequency.

Mode 1: Serial data enters through the RXD pin and exits through the TXD pin. In this
mode, a start bit of logic level 0 is transmitted then 8 bits are transmitted with the least
significant bits first up to the most significant bit; following the most significant bit is
the stop bit which is a logic 1. When receiving data in this mode, the stop bit is placed
into RB8 in the SFR (Special Function Register) SCON. The baud rate is variable and
is controlled by either timer 1 or timer 2 reload values.

Mode 2: Serial data enters through the RXD pin and exits through the TXD pin. In this
mode, a total of 11 bits are transmitted or received starting with a start bit of logic level
0, 8 bits of data with the least significant bit first, a user programmable ninth data bit,
and a stop bit of logic level 1. The ninth data bit is the value of the TB8 bit inside the
SCON register. This programmable bit is often used for parity information. The baud
rate is programmable to either 1/32 or 1/64 of the oscillator frequency.

Mode 3: Mode three is identical to mode 2 except that the baud rate is variable and is
controlled by either timer 1 or timer 2 reload values.

For more detailed information on each serial port mode, refer to the "Hardware
Description of the 8051, 8052, and 80c51." in the 1993 Embedded Microcontrollers and
Processors (270645).

Baud Rate Generation Using Timer Two

RCAP2L and RCAP2H are 8-bit registers combined as a 16-bit entity that timer 2 uses
as a reload value. Each time timer 2 overflows (goes one past FFFFH), this 16-bit
reload value is placed back into the timer, and the timer begins to count up from there
until it overflows again. Each time the timer overflows, it signals the processor to send
a data bit out the serial port. The larger the reload value (RCAP2H, RCAP2L), the more
frequently the data bits are transmitted out the serial port. This frequency of data bits
transmitted or received is known as the baud rate.

Table One

Baud Rate
Freq

(Mhz) RCAP2H RCAP2L Baud Rate
Freq

(Mhz) RCAP2H RCAP2L
38,400 16 FF F3 56,800 11.059 FF FA
19,200 16 FF E6 38,400 11.059 FF F7
9,600 16 FF CC 19,200 11.059 FF EE
4,800 16 FF 98 9,600 11.059 FF DC
2,400 16 FF 30 4,800 11.059 FF B8
1,200 16 FE 5F 2,400 11.059 FF 70
600 16 FC BF 1,200 11.059 FE E0
300 16 F9 7D 600 11.059 FD C0
110 16 EE 3F 300 11.059 FB 80

375,000 12 FF FF 4,800 6 FF D9
9,600 12 FF D9 2,400 6 FF B2
4,800 12 FF B2 1,200 6 FF 64

Page 2 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

Baud Rate Generation Using Timer One

Similar to timer 2, TH1 is an 8-bit register that timer 1 uses as it's reload value. The
larger the number placed in TH1, the faster the baud rate. SMOD1 is bit position 7 in
the PCON register. This bit is called the "Double Baud Rate Bit". When the serial port
is in mode 1, 2 or 3 and timer 1 is being used as the baud rate generator, the baud rate
can be doubled by setting SMOD1. For example; TH1 equals DDH and the oscillator
frequency equals 16Mhz, then the baud rate equals 2400 baud if SMOD1 is set. If
SMOD1 is cleared, for the same example, then the baud rate would be 1200.

Table Two

Baud Rates Missing
Why are some baud rates missing from the table?
If you look at the table carefully, you will notice that some common baud rates are
missing in certain scenarios. The reason is, certain microcontroller operating
frequencies will only support specific baud rates. Just because a baud rate reload value
can be calculated by the previous equations, doesn't mean that the microcontroller can
accurately generate that specific baud rate. If you would like to calculate a baud rate
that is not in the previous tables, or if you want to find out if a specific baud rate can be
accurately generated at a specific operating frequency, follow these steps:

1. Use the appropriate equation to calculate the reload value.
2. Round off the calculated reload value to the nearest whole number.
3. Recalculate the baud rate using the rounded off reload value.
4. Calculate the percent error between the two baud rates by using the following

formula:

2,400 12 FF 64 600 6 FE C8
1,200 12 FE C8 300 6 FD 8F
600 12 FD 8F 110 6 F9 57
300 12 FB 1E

Baud Rate
Freq

(Mhz) SMOD1 TH1 Baud Rate
Freq

(Mhz) SMOD1 TH1
4,800 16 1 EF 56,800 11.059 1 FF
2,400 16 1 DD 19,200 11.059 1 FD
1,200 16 1 BB 9,600 11.059 1 FA
600 16 1 75 4,800 11.059 1 F4

2,400 16 0 EF 2,400 11.059 1 E8
1,200 16 0 DD 1,200 11.059 1 D0
600 16 0 BB 600 11.059 1 A0
300 16 0 75 300 11.059 1 40

4,800 12 1 F3 9,600 11.059 0 FD
2,400 12 1 E6 4,800 11.059 0 FA
1,200 12 1 CC 2,400 11.059 0 F4
600 12 1 98 1,200 11.059 0 E8
300 12 1 30 600 11.059 0 D0

2,400 12 0 F3 300 11.059 0 A0
1,200 12 0 E6 1,200 6 0 F3
600 12 0 CC 600 6 0 E6
300 12 0 98 300 6 0 CC

110 6 0 72

Page 3 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

5. If the percent error is less that 2%, then the rounded reload value is adequate to
generate the specified baud rate. If the error is greater than 2%, this means the
baud rate generated by the microcontroller would be different from the baud rate
that you expect to be transmitting and there may be a loss of data in the process.

Common Questions
The intention of this section is to provide quick answers to common problems and
questions when trying to set up the serial port in the MCS®-51 family. This has been
compiled by Intel employees who technically support the MCS®-51 family of
microcontrollers.

1. What is the purpose of using interrupts and/or polling in serial applications? In
serial applications, it is necessary to know when data has completed transmission or has
completed reception. Whenever data has completed transmission or completed
reception, there is a specific bit (flag) that is set when the process has been completed.
These two specific bits are located in the SCON register and determine when an
interrupt will occur or when the polling sequence should be complete. The bits are RI
and TI.

l RI is the receive interrupt flag. When operating in mode 0 of the UART, this bit
is set by hardware when the 8th bit is received. In all other UART operating
modes, the RI bit is set by hardware upon reception halfway through the stop bit.
RI bit must be cleared by software at the end of the interrupt service routine or at
the end of the polling sequence.

l TI is the transmit interrupt flag. This bit operates in the same manner as RI
except it is valid for transmission of data, not reception. By using either
interrupts or polling, it is necessary to check to see if either of the two bits are set.

l For the case of transmitting data, it is necessary to "watch" to see if the TI bit is
set. A set bit has a logic level of 1 and a cleared bit has a logic level of 0. If you
try to transmit more data and your previous data has not yet fully been
transmitted, you will overwrite on top of it and have data corruption. Therefore,
you must only transmit the next piece of data after the transmission of the current
data has been completed.

l For the case of receiving data, it is necessary to watch and see if the RI bit is set.
This bit serves a similar purpose as the TI bit. Upon reception of data, it is
necessary to know when data has been completely received so it can be read
before more data comes and overwrites the existing data in the register.

2. How does the serial interrupt and polling work?
A serial interrupt will occur whenever the RI or the TI bit has been set and the serial
interrupts have been enabled in the IE and SCON register. When TI or RI is set, the
processor will vector to location 23H. A common serial interrupt routine would be the
following:

...
org 23h

JMP label
...
...

label: subroutine code
...

RETI

After the processor vectors to 23H, it will then vector off to location label which has a
physical location defined by the assembler. Label is the start of your serial interrupt
subroutine which should do the following:

l Find out which bit caused the interrupt RI or TI.
l Move data into or out of the SBUF register if necessary.
l Clear the corresponding bit that caused the interrupt.

The last line of your serial interrupt subroutine should be RETI. This makes the
processor vector back to the next line of code to be executed before the processor was
interrupted.

Page 4 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

Polling is easier to implement than interrupt driven routines. The technique of polling is
simply to continuously check a specified bit without doing anything else. When that bit
changes state, the loop should end. For the case of serial transmission, a section of
sample code would be the following:

...
JNB TI, $;this code will jump onto itself until TI is set

CLR TI ;clear the TI bit
...

For receive polling, just replace the TI in the previous code with RI. In either case,
make sure that after polling has completed, clear the bit that you were polling.

3. When should I choose polling or interrupts?
Polling is the simplest to use but it has a drawback; high CPU overhead. This means
that while the processor is polling, it is not doing anything else, this is a waste of the
CPU's time and tends to make programs slow.

Interrupts are a little more complex to use but allows the processor to do other
functions. Thus, serial communication functions are executed only when needed. This
makes programs run faster than programs that use polling.

Common Problems
I am viewing data on an oscilloscope and I am not seeing the data I transmitted; I
see other data instead. Why?
You are not waiting for the data to be completely transmitted before you send more
data out. The new data is being written on top of the old data before it exits to the serial
port. See "What is the purpose of using interrupts and/or polling in serial applications"
on page 6.

I am moving data into SBUF, all my registers are configured for serial
communications, and nothing is being transmitted. Why?
Chances are that the timer you chose for your baud rate generator was never started or
"turned on."

All of the registers are set up correctly, but when I receive data, the
microcontroller never vectors to the interrupt routine. Why?
The global interrupt enable bit has not been set or the serial interrupt bit has not been
set. The address of the first line of the serial interrupt routine was not at location 23H.

I am trying to transmit data and all I see on the oscilloscope is a square wave
coming out of the Txd pin. Why?
The microcontroller serial port is in mode 0. In mode 0, the Txd pin outputs the shift
clock (a square wave). Data is actually transmitted and received through the Rxd pin.

I am receiving data and I move it to another register and read it. The value that I
am reading is not the data that I received. Why?
The data that was received was not moved out of the buffer (SBUF) fast enough before
the new data arrived. Therefore, part of the old data got overwritten before you
transferred it to another register. To avoid this, see "What is the purpose of using
interrupts and/or polling in serial applications?" on page 6.

Sample Programs
The following programs have been designed to aid in the understanding of the general
setup and transmission of serial applications.

Page 5 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

Page 6 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

Page 7 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

Site Map RSS Jobs Investor Relations Press Room Contact Us
Terms of Use *Trademarks Privacy ©Intel Corporation

Page 8 of 8Intel(R) MCS(R) 51/251 Microcontrollers

12/31/2008http://www.intel.com/design/mcs51/applnots/2047.htm

	Microcontroller
	Microcontroller
	BOOTSTRP
	SIO
	SERIAL PORT.pdf

