
Programming the MCU 8051 Page 1 of 48

Programming the MCU 8051

1. Circuit to access internal RAM and code memory

2. Program the Ports

3. Program the Timers

4. Program the serial interface

5. Program the interrupts

6. Circuit to access external RAM and code memory

a. The most widely used registers

• A (Accumulator) - For all arithmetic and logic instructions –

• B, R0, R1, R2, R3, R4, R5, R6, R7

• DPTR (data pointer), and PC (program counter)

• Program status word register (PSW)

b. Program status word register (PSW)

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

CY AC F0 RS1 RS0 OV - P

CY PSW.7 Carry flag.

AC PSW.6 Auxiliary carry flag.

F0 PSW.5 Available to the user for

general purpose

RS1 PSW.4 Register Bank selector bit 1.

RS0 PSW.3 Register Bank selector bit 0.

OV PSW.2 Overflow flag.

-- PSW.1 User definable bit.

P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate

an odd/even number of 1 bits in the accumulator.

c. Register banks and Switching between them

There are 4 banks of registers R0 – R7 at memory addresses 00 – 1Fh.

Switching is done through Register Bank selector bits PSW.3 & PSW.4 of Program status word

register (PSW)

RS1 RS0 Register

Bank

Address

0 0 0 00H – 07H

0 1 1 08H – 0FH

1 0 2 10H – 17H

1 1 3 18H – 1FH

Programming the MCU 8051 Page 2 of 48

• Use the bit-addressable instructions SETB and CLR to access PSW.3 and PSW.4

Example:

At power up the register bank 0 is default and bits PSW.3 and PSW.4 are 0.

SETB PSW.4 ;sets RS1=1 and RS0=0 to select bank 2

d. Types of 8051 memory

1. On-chip memory – contained in the MCU,

2. External memory – can be connected to MCU using interface circuits.

Internal Memory

The on-chip memory of 8051 consists of 256 bytes of memory:

First 128 bytes: 00h to 1Fh Register Banks

 20h to 2Fh Bit addressable RAM

 30h to 7Fh General purpose RAM

Next 128 bytes: 80h to FFh Special function

Registers

Memory Space for Internal RAM

Address RAM designation

7F-30 Scratch pad RAM

2F-20 Bit-Addressable RAM

1F-18 Registers (7..0) Bank 3

17-10 Registers (7..0) Bank 2

0F-08 Registers (7..0) Bank 1 (stack)

07-00 Registers (7..0) Bank 0

8051 chip

Internal

Memory

Internal

SFRs

Internal
RAM

External Data
Memory

(max. 64 KB)

RAM

External Code

Memory

(max. 64 KB)

ROM

FFFFh

0000h

FFFFh

0000h

The first 128 bytes is also

known as internal RAM

(IRAM)

Register bank 0

07h REG.7
06h REG.6

05h REG.5

04h REG.4
03h REG.3

02h REG.2

01h REG.1
00h REG.0

Programming the MCU 8051 Page 3 of 48

Addressing modes

The CPU can access data in various ways, which are called addressing modes

1. Immediate

2. Register

3. Register direct

4. Register indirect

5. Indexed

Immediate addressing mode

The source operand is a constant.

• The immediate data must be preceded by the pound sign, “#”

Examples:

MOV A, #25H ;load 25H into A

MOV P1,#55H ;send data to port # 1

MOV DPTR, #4521H ;DPTR=4512H

• DPTR can also be accessed as two 8-bit registers, the high byte DPH and low byte DPL

MOV DPL, #21H ;This is the same

MOV DPH, #45H ;as above

• Use EQU directive to access immediate data:

Count EQU 1EH

MOV R4, #COUNT ;R4=1EH

MOV DPTR, #MYDATA ;DPTR=200H

ORG 200H

MYDATA: DB “America”

Register addressing mode

Data transfer between registers.

Examples:

• Usually the register bank locations are accessed by the register names

MOV A, R4 ;copy contents of R4 into A

MOV R2, A ;copy contents of A into R2

MOV R7, DPL

• The movement of data between Rn registers is not allowed

MOV R4,R7 ;is invalid

• The source and destination registers must match in size.

MOV DPTR,A ;is invalid

Programming the MCU 8051 Page 4 of 48

Direct addressing mode

Data transfer between register and memory by its address .

There is no “#” sign in the operand.

The entire 128 bytes of RAM can be accessed.

Examples:

MOV A, 04 ; copy contents of R4 into A

• Usually the direct addressing mode is used to access RAM locations 30 – 7FH

MOV R0, 40H ;save content of 40H in R0

MOV 56H, A ;save content of A in 56H

• The Special Function Register (SFR) can be accessed by their names or by their addresses

The SFR registers have addresses between 80H and FFH

MOV 0E0H, #55H ;is the same as

MOV A, #55h ;load 55H into A

MOV 0F0H, R0 ;is the same as

MOV B, R0 ;copy R0 into B

Special Function Register (SFR)

Symbol Name Address

ACC* Accumulator 0E0H

B* B register 0F0H

PSW* Program status word 0D0H

SP Stack pointer 81H

DPTR Data pointer 2 bytes

DPL Low byte 82H

DPH High byte 83H

P0* Port0 80H

P1* Port1 90H

P2* Port2 0A0H

P3* Port3 0B0H

IP* Interrupt priority control 0B8H

IE* Interrupt enable control 0A8H

TMOD Timer/counter mode control 89H

TCON* Timer/counter control 88H

T2CON* Timer/counter 2 control 0C8H

PCON Power control 87H

SBUF Serial data buffer 99H

SCON* Serial control 98H

RCAP2L T/C 2 capture register low byte 0CAH

RCAP2H T/C 2 capture register high byte 0CBH

TL2 Timer/counter 2 low byte 0CCH

TH2 Timer/counter 2 high byte 0CDH

TL1 Timer/counter 1 low byte 8BH

Programming the MCU 8051 Page 5 of 48

TH1 Timer/counter 1 high byte 8DH

TL0 Timer/counter 0 low byte 8AH

TH0 Timer/counter 0 high byte 8CH

T2MOD Timer/counter mode control 0C9H

* Bit addressable

• Only direct addressing mode is allowed for pushing or popping the stack

PUSH 0E0H ;Pushing the accumulator onto the stack

PUSH A ;invalid

PUSH 05H ;push R5 onto stack

POP 02H ;pop top of stack into R2

Memory addresses of SFR register
Byte

address
Bit address SFR

Names b7 b6 b5 b4 b3 b2 b1 b0

FFh

F0h F7 F6 F5 F4 F3 F2 F1 F0 B*

E0h E7 E6 E5 E4 E3 E2 E1 E0 A* (accumulator)

D0h D7 D6 D5 D4 D3 D2 D1 D0 PSW*

B8h -- -- -- BC BB BB B9 B8 IP*

B0h B7 B6 B5 B4 B3 B2 B1 B0 Port 3 (P3*)

A8h AF -- -- AC AB AA A9 A8 IE*

A0h A7 A6 A5 A4 A3 A2 A1 A0 Port 2 (P2*)

99h SBUF

98h 9F 9E 9D 9C 9B 9A 99 98 SCON*

90h 97 96 95 94 93 92 91 90 Port 1 (P1*)

8Dh TH1

8Ch TH0

8Bh TL1

8Ah TL0

89h TMOD

88h 8F 8E 8D 8C 8B 8A 89 88 TCON*

87h PCON

83h DPH

82h DPL

81h SP

80h 87 86 85 84 83 82 81 80 Port 0 (P0*)

* indicates the bit addressable SFR registers

Special
Function
Registers

[SFR]

Internal

RAM
[IRAM]

Internal Memory

FFh

80h
7Fh

00h

Programming the MCU 8051 Page 6 of 48

Register indirect addressing mode

A register is used as a pointer to the data.

a) To access the internal RAM only registers R0 and R1 are used

• When R0 and R1 hold the addresses of RAM locations, they must be preceded by the “@”

sign

Examples:

MOV A,@R0 ;move contents of RAM whose address is held by R0 into A

MOV @R1,B ;move contents of B into RAM ;whose address is held by R1

b) To accessing externally connected RAM or on-chip code ROM, the DPTR register is used as

16-bit pointer

Indexed addressing mode

It is used in accessing data elements of look-up table entries located in the on-chip code ROM

The instruction:

MOVC A, @A+DPTR

• The contents of A are added to the 16-bit register DPTR to form the 16-bit address of the

needed data

• “C” means code

Examples:

Write a program to get the x value from P1 and send x2 to P2 continuously

ORG 0

MOV DPTR, #300H ;LOAD TABLE ADDRESS

MOV A, #0FFH ;A=FF

MOV P1, A ;CONFIGURE P1 INPUT PORT

BACK: MOV A,P1 ;GET X

MOV A, @A+DPTR ;GET X SQAURE FROM TABLE

MOV P2, A ;ISSUE IT TO P2

SJMP BACK ;KEEP DOING IT

ORG 300H

XSQR_TABLE:

DB 0,1,4,9,16,25,36,49,64,81

END

Programming the MCU 8051 Page 7 of 48

Single-bit operation

Single-bit instructions allow to set, clear, move, and complement individual bits of a port,

memory, or register.

Bit address 00-7FH belong to RAM byte addresses 20-2FH

Bit address 80-F7H belong to SFR P0, P1, …

• Internal RAM locations 20-2FH are both byte-addressable and bit addressable

• The 128 bytes of RAM have the byte addresses of 00 – 7FH can be accessed in byte size

using direct and register-indirect addressing modes.

• The 16 bytes of RAM locations 20 – 2FH have bit address of 00 – 7FH can be accessed

by the single-bit instructions only which use direct addressing mode only.

• SFR registers A, B, PSW, IP, IE, ACC, SCON, TCON and all I/O ports are bit-

addressable

• Code ROM, holding program for execution, is not bit-addressable

Instructions for single-bit operations

Instructions Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit = 0)

CPL bit Complement the bit (bit = NOT bit)

JB bit, target Jump to target if bit = 1 (jump if bit)

JNB bit, target Jump to target if bit = 0 (jump if no bit)

JBC bit, target Jump to target if bit = 1, clear bit (jump if bit, then clear)

• The BIT directive is a widely used directive to assign the bit-addressable I/O and RAM

locations

Example: A switch is connected to pin P1.7 and an LED to pin P2.0. Write a

program to get the status of the switch and send it to the LED.

Bit addressable RAM

Programming the MCU 8051 Page 8 of 48

Solution:

LED BIT P1.7 ;assign bit

SW BIT P2.0 ;assign bit

HERE: MOV C, SW ;get the bit from the port

MOV LED, C ;send the bit to the port

SJMP HERE ;repeat forever

• Use the EQU directive to assign addresses

Defined by names, like P1.7 or P2

Defined by addresses, like 97H or 0A0H

Example :

A switch is connected to pin P1.7. Write a program to check the status of the switch and

make the following decision.

(a) If SW = 0, send “0” to P2

(b) If SW = 1, send “1“ to P2

Solution:

SW EQU P1.7

MYDATA EQU P2

HERE: MOV C,SW

JC OVER

MOV MYDATA,#’0’

SJMP HERE

OVER: MOV MYDATA, #’1’

SJMP HERE

END

The enhanced MCU 8052

It has another 128 bytes of on-chip RAM with addresses 80 – FFH often called upper memory.

Use indirect addressing mode, which uses R0 and R1 registers as pointers with values of 80H or

higher to access Ram locations

– MOV @R0, A and MOV @R1, A

The SFRs are also assigned the same address space with addresses 80 – FFH .

Use direct addressing mode to access them

– MOV 90H, #55H or MOV P1, #55H

Programming the MCU 8051 Page 9 of 48

1) Circuit to access internal RAM and code memory

Pin 30 /EA: External Access - pin is pulled high by connecting it to Vcc.

Pins 18 and 19 Crystal: Connected to Crystal to provide system clock.

Pin 9 RESET: made high for small amount of time at power up to set 8051

to its initial values.

Power-on reset

RESET pin is active high .

Upon applying a high pulse to this pin, the microcontroller will reset and terminate all activitiesƒ
Activating a power-on reset will cause the following values in the registers.

Register Reset Value

B 00

P0-P3 FF

SP 07

PSW 00

ACC 00

DPTR 0000

PC 0000

Programming the MCU 8051 Page 10 of 48

2) Program the Ports

There are four 8-bit I/O ports P0, P1, P2 and P3.

Hardware features:

Port 0 –

a) P0 is an open drain, each pin must be connected externally to pull-up resistors.

b) If 8051is connected with external memory Port 0 is designated as AD0-AD7, allowing it to

be used for both address and data.

Port 1 –

It can be used for input or output port.

Port 2 –

a) It can be used for input or output port.

b) Port 2 is also designated as A8 – A15, to provide upper 8 bit address for the external memory

Port 3 –

a) It can be used for input or output port.

b) It has the additional function of providing important signals

P3 bit Function Pin Function

P3.0 RxD 10 Serial

communication P3.1 TxD 11

P3.2 /INT0 12 External

interrupts P3.3 /INT1 13

P3.4 T0 14 Timers

P3.5 T1 15

P3.6 /WR 16 Write / Read signals

of external memories P3.7 /RD 17

Software features:

• All the ports upon RESET are configured as input ports

• Configuration of ports

a) Output port - write 0 to the port,

b) Input port - write 1 to the port,

Programming the MCU 8051 Page 11 of 48

Example:

1) Access all bits of port

• Send out continuously to port 0 values 55H and AAH alternating

;;The entire 8 bits of Port 0 are accessed

BACK: MOV A,#55H

MOV P0, A

ACALL DELAY

MOV A, #0AAH

MOV P0, A

ACALL DELAY

SJMP BACK

• Receive data from Port 0 and sent to P1

;; Make Port 0 as an input port by writing 1s to it, and then get data from P0 and send it to port 1

MOV A, #0FFH

MOV P0, A

BACK: MOV A, P0

MOV P1,A

SJMP BACK ; keep doing it

2) access only 1 or 2 bits of the port

BACK: CPL P1.2 ;complement P1.2

ACALL DELAY

SJMP BACK

Another variation of the above program

AGAIN: SETB P1.2 ;set only P1.2

ACALL DELAY

CLR P1.2 ;clear only P1.2

ACALL DELAY

SJMP AGAIN

Delay subroutine:
DELAY: MOV R2, #200

AGAIN: MOV R3, #250

HERE: NOP

NOP

DJNZ R3, HERE

DJNZ R2, AGAIN

RET

Note: If the crystal frequency is 11.0592MHz, then the delay is 0.217 ms.

P0 P1 P2 P3 Port Bit

P0.0 P1.0 P2.0 P3.0 D0

P0.1 P1.1 P2.1 P3.1 D1

P0.2 P1.2 P2.2 P3.2 D2

P0.3 P1.3 P2.3 P3.3 D3

P0.4 P1.4 P2.4 P3.4 D4

P0.5 P1.5 P2.5 P3.5 D5

P0.6 P1.6 P2.6 P3.6 D6

P0.7 P1.7 P2.7 P3.7 D7

Larger delay subroutine:

DELAY: MOV R1, #32

DEL1: MOV R2, #32

DEL2: MOV R3, #15

DEL3: DJNZ R3, DEL3

 DJNZ R2, DEL2

 DJNZ R1, DEL1

RET

Programming the MCU 8051 Page 12 of 48

3) Instructions for reading an input port

Mnemonic Examples Description

MOV A, PX MOV A, P2 Bring into A the data at P2 pins

JNB PX.Y, .. JNB P2.1, TARGET Jump if pin P2.1 is low

JB PX.Y, .. JB P1.3, TARGET Jump if pin P1.3 is high

MOV C, PX.Y MOV C, P2.4 Copy status of pin P2.4 to CY

In

Example

A switch is connected to pin P1.7. Write a program to check the status of SW and perform

the following:

(a) If SW=0, send letter ‘N’ to P2

(b) If SW=1, send letter ‘Y’ to P2

Solution:

SETB P1.7 ; make P1.7 an input

AGAIN: JB P1.2,OVER ; jump if P1.7=1

MOV P2,#’N’ ; SW=0, issue ‘N’ to P2

SJMP AGAIN ; keep monitoring

OVER: MOV P2,#’Y’ ; SW=1, issue ‘Y’ to P2

SJMP AGAIN ; keep monitoring

Example

A switch is connected to pin P1.0 and an LED to pin P2.7. Write a program to get the status

of the switch and send it to the LED

Solution:

SETB P1.7 ; make P1.7 an input

AGAIN: MOV C, P1.0 ; read SW status into CF

MOV P2.7, C ; send SW status to LED

SJMP AGAIN ; keep repeating

4) Possibilities of reading a port

a) Read the status of the input pin

b) Read the internal latch of the output port

Example: Instruction ANL P1,A

the sequence of actions is executed as follow

1. reads the internal latch of the port and brings that data into the CPU

2. This data is processed with the contents of register A

3. The result is rewritten back to the port latch

4. The port pin data is changed and now has the same value as port latch

Read-Modify-Write instructions

• read the port latch, normally read a value,

• perform an operation

• then rewrite it back to the port latch

Programming the MCU 8051 Page 13 of 48

Mnemonics Example

ANL PX ANL P1,A

ORL PX ORL P2,A

XRL PX XRL P0,A

JBC PX.Y,TARGET JBC P1.1,TARGET

CPL PX.Y CPL P1.2

INC PX INC P1

DEC PX DEC P2

DJNZ PX.Y,TARGET DJNZ P1,TARGET

MOV PX.Y,C MOV P1.2,C

CLR PX.Y CLR P2.3

SETB PX.Y SETB P2.3

Note: x is 0, 1, 2, or 3 for P0 – P3

The ports in 8051 can be accessed by the Read-modify-write technique

1) Reading the port

2) Modifying it

3) Writing to the port

Example:

MOV P1,#55H ;P1=01010101

AGAIN: XRL P1,#0FFH ;XOR P1 with 1111 1111

ACALL DELAY

SJMP AGAIN

Programming the MCU 8051 Page 14 of 48

3. Program the Timers

The 8051 has two timers/counters used as

a) Timers: to generate a time delay or

b) Event counters: to count events

Steps of timer programming

1. Configure the timers using Mode Register (TMOD)

2. Select the count number using Timer registers (TH & TL)

3. Run / stop the timers using TR and TF bits of TCON register

1. Timer Mode Register (TMOD)

It configures the various timer operation modes .

TMOD is a 8-bit register

• The lower 4 bits are for Timer 0

• The upper 4 bits are for Timer 1

In both cases,

• The lower 2 bits are used to set the timer mode

• The upper 2 bits to specify the operation

Gating control (GATE) bit

Starting and stopping of timers of 8051 by

a) software

GATE=0. The start and stop of the timer are controlled by the TR (timer start) bits TR0

and TR1 of TCON register.

– The SETB instruction starts it, and it is stopped by the CLR instruction

b) hardware

The start and stop of the timer are controlled by an external source is achieved by making

GATE=1 in the TMOD register

Timer/counter is enabled while

• the INTx pin is high (pins P3.2 and P3.3 for timers 0 and 1) and

• the Tx control pin is set (pins P3.4 and P3.5 for timers 0 and 1).

Timer or counter select (C/T) bit

• C/T = 0 - timer operation (input from internal system clock divided 12)

• C/T = 1 - for counter operation (input from Tx input pin)

Mode bits (M1, M0) bits

M1 M0 Mode Operating Mode

0

0 0 13-bit timer mode

8-bit timer/counter THx with TLx as 5-bit prescaler

0

1 1 16-bit timer mode

16-bit timer/counter THx and TLx are cascaded; there is no prescaler

1

0 2 8-bit auto reload

8-bit auto reload timer/counter; THx holds a value which is to be

reloaded TLx each time it overflows

1 1 3 Split timer mode

TMOD register
Msb Lsb

GATE C/T M1 M0 GATE C/T M1 M0

TIMER 1 TIMER 0

Programming the MCU 8051 Page 15 of 48

2. Timer register

Both Timer 0 and Timer 1 are 16 bits wide, each accessed as two separate registers of low byte

and high byte.

• The low byte register is called TL0/TL1 and

• The high byte register is called TH0/TH1

3. Timer/Counter Control Register (TCON)

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TF1 8Fh bit is automatically set on the Timer 1 overflow.

TR1 8Eh bit enables the Timer 1.

 1 - Timer 1 is enabled.

 0 - Timer 1 is disabled.

TF0 8Dh bit is automatically set on the Timer 0 overflow.

TR0 8Ch bit enables the timer 0.

 1 - Timer 0 is enabled.

 0 - Timer 0 is disabled.

The lower 4 bits are set aside for controlling the interrupt bits

Steps to generate a time delay

1. Load the TMOD value register select timer (0 or 1) and timer mode (0 or 1),

2. Load registers TL and TH with initial count value

3. Start the timer by setting TRx bit of TCON register

4. Keep monitoring the timer flag (TF) with the JNB TFx, target instruction to see if it is high

5. Get out of the loop when TF becomes high

6. Stop the timer by clearing TRx bit of TCON register

7. Clear the TF flag for the next round

8. Go back to Step 2 to load TH and TL again

Operation of mode 1:

1. It is a 16-bit timer; therefore, it allows value of 0000 to FFFFH to be loaded into the timer’s

register TL and TH

2. After TH and TL are loaded with a 16-bit initial value, the timer must be started . This is done

by SETB TR0 for timer 0 and SETB TR1 for timer 1

3. After the timer is started, it starts to count up. It counts up until it reaches its limit of FFFFH

When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer flag)

- Each timer has its own timer flag: TF0 for timer 0, and TF1 for timer 1

- When this timer flag is raised, stop the timer with the instructions CLR TR0 or CLR TR1,

for timer 0 and timer 1, respectively

4. After the timer reaches its limit and rolls over, in order to repeat the process

- TH and TL must be reloaded with the original value, and

- TF must be reloaded to 0

Programming the MCU 8051 Page 16 of 48

Example

Create a square wave of 50% duty cycle (with equal portions high and low) on the P1.5 bit.

Timer 0 is used to generate the time delay.

Solution

MOV TMOD, #01 ;Timer 0, mode 1(16-bit mode)

HERE: MOV TL0, #0F2H ;TL0=F2H, the low byte

MOV TH0, #0FFH ;TH0=FFH, the high byte

CPL P1.5 ;toggle P1.5

ACALL DELAY

SJMP HERE

DELAY:

SETB TR0 ;start the timer 0

AGAIN: JNB TF0, AGAIN ;monitor timer flag 0 until it rolls over

CLR TR0 ;stop timer 0

CLR TF0 ;clear timer 0 flag

RET

Example

A 8051 C program to toggle only bit P1.5 continuously every 50 ms.

Use Timer 0, mode 1 (16-bit) to create the delay.

Solution

#include <reg51.h>

void T0M1Delay(void);

sbit mybit=P1^5;

void main(void){

while (1) {

mybit=~mybit;

T0M1Delay();

}

}

void T0M1Delay(void){

TMOD=0x01;

TL0=0xFD;

TH0=0x4B;

TR0=1;

while (TF0==0);

TR0=0;

TF0=0;

}

Programming the MCU 8051 Page 17 of 48

Mode 2 operation

1. It is an 8-bit timer. It allows values of 00 to FFH to be loaded into the timer’s register TH

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL

3. Start the timer by the instruction SETB TRx for timers

4. After the timer is started,

• It counts up by incrementing the TL register to FFH

• then it rolls over from FFH to 00,

• sets high the TF (timer flag)

• TL is reloaded automatically with the original value in the TH register

Example

Generated square wave on pin P1.0 using 8-bit/auto reload mode 2

Solution

MOV TMOD,#20H ; T1/8-bit/auto reload

MOV TH1,#5 ; TH1 = 5

SETB TR1 ; start the timer 1

BACK:

JNB TF1,BACK ;till timer rolls over

CPL P1.0 ;P1.0 to hi, lo

CLR TF1 ;clear Timer 1 flag

SJMP BACK ;mode 2 is auto-reload

Start or stop the timer externally

If GATE = 1, the start and stop of the timer are done externally through pins P3.2 and P3.3 for

timers 0 and 1, respectively

Although the TRx is turned on by the “SETB TRx “ instruction , the hardware way allows to

start or stop the timer externally at any time via a simple switch

Value (in hex) loaded into TH for the following cases.

(a) MOV TH1,#-200 (b) MOV TH0,#-60 (c) MOV TH1,#-3

(d) MOV TH1,#-12 (e) MOV TH0,#-48

Programming the MCU 8051 Page 18 of 48

Solution:

• In Windows calculator, select decimal and enter 200.

• Then select hex, then +/- to get the TH value.

• Use only the right two digits and ignore the rest since data is 8-bit.

Decimal 2’s complement (TH value)

-3 FDH

-12 F4H

-48 D0H

-60 C4H

-200 38H

• The advantage of using negative values is that, there is no need to calculate the value loaded

to THx

Counter programming

• In counter mode, external pulse increments the TH, TL registers

• The timer is used as a counter by putting C/T = 1 in the TMOD registers, so that the 8051

gets its pulses from outside

• The counter counts up as pulses are fed from P3.4 and P3.5 pins , these pins are called T0

(timer 0 input) and T1 (timer 1 input)

Pin Port Pin Function Description

14 P3.4 T0 Timer/counter 0 external input

15 P3.5 T1 Timer/counter 1 external input

Example: Assuming that clock pulses are fed into pin T1, write a program for counter 1 in

mode 2 to count the pulses and display the state of the TL1 count on P2, which connects to 8

LEDs.

Solution:

MOV TM0D,#01100000B ;counter 1, mode 2, C/T=1 external pulses

MOV TH1,#0 ;clear TH1

SETB P3.5 ;make T1 input

AGAIN: SETB TR1 ;start the counter

BACK: MOV A,TL1 ;get copy of TL

MOV P2,A ;display it on port 2

JNB TF1,Back ; keep doing, if TF = 0

CLR TR1 ;stop the counter 1

CLR TF1 ;make TF=0

SJMP AGAIN ;keep doing it

Note:

The timer works with a clock frequency of 1/12 of the XTAL frequency;

 therefore, we have 11.0592 MHz / 12 = 921.6 kHz as the timer frequency.

As a result, each clock has a period of T = 1/921.6kHz = 1.085us.

The number 200 is the

timer count till the TF

is set to 1

Programming the MCU 8051 Page 19 of 48

 In other words, Timer 0 counts up each 1.085 us resulting in delay = number of counts ×

1.085us.

The number of counts for the roll over is FFFFH – FFF2H = 0DH (13d). However, we add one

to 13 because of the extra clock needed when it rolls over from FFFF to 0 and raise the TF flag.

This gives 14 × 1.085us = 15.19us for half the pulse.

For the entire period it is T = 2 × 15.19us = 30.38us as the time delay generated by the timer.

Programming the MCU 8051 Page 20 of 48

Asynchronous serial data communication

• used for character-oriented transmissions

• Each character is placed in between start and stop bits, this is called framing

• The start bit is always one bit, but the stop bit can be one or two bits

• The start bit is always a 0 (low) and the stop bit(s) is 1 (high)

• When there is no transfer, the signal is 1 (high), which is referred to as mark

• The transmission begins with a start bit followed by D0, the LSB, then the rest of the bits

until MSB (D7), and finally, the one stop bit indicating the end of the character

• Bits per second - The rate of data transfer in serial data communication is stated in bps

• Baud rate - the number of signal changes per second

Set baud rate

• Dividing 1/12 of the crystal frequency by 32 is the default

value upon activation of the 8051 RESET pin

• The machine cycle frequency of 8051 = 11.0592 / 12 = 921.6 kHz,

and 921.6 kHz / 32 = 28,800 Hz is frequency by UART to timer 1 to

set baud rate.

(a) 28,800 / 03 = 9600 where -03 = FDh is loaded into TH1

(b) 28,800 / 12 = 2400 where -12 = F4h is loaded into TH1

(c) 28,800 / 24 = 1200 where -24 = E8h is loaded into TH1

TF is set to 1 every 12

ticks, so it functions as

a frequency divider

Pins of 8051 for serial communication

For transferring data TxD (P3.0) and receiving data RxD (P3.1) serially

Registers involved in serial data communication programming

1. Serial control (SCON) register to define the data frame, tranmision / reception control,

2. Serial data buffer (SBUF) register stores a byte data to be transferred / received

3. TMOD and TCON registers to setup the baud rate

Programming the MCU 8051 Page 21 of 48

SCON register

An 8-bit register used to program the start bit, stop bit, and data bits of data framing, etc

D7 D0

SM0 SM1 SM2 REN TB8 RB8 TI RI

SM0 SCON.7 Serial port mode specifier

SM1 SCON.6 Serial port mode specifier

SM2 SCON.5 Used for multiprocessor communication

REN SCON.4 Set/cleared by software to enable/disable reception

TB8 SCON.3 Not widely used

RB8 SCON.2 Not widely used

TI SCON.1 Transmit interrupt flag.

Set by HW at the begin of the stop bit mode 1. And cleared by SW

RI SCON.0 Receive interrupt flag.

Set by HW at the begin of the stop bit mode 1. And cleared by SW

Note: Make SM2, TB8, and RB8 =0

SM0, SM1

They determine the framing of data by specifying the number of bits per character, and the start

and stop bits

SM0 = 0, SM1 = 1 Serial Mode 1, 8-bit data, 1 stop bit, 1 start bit

REN (receive enable)

It is a bit-adressable register. When it is high, it allows 8051 to receive data on RxD pin

If low, the receiver is disable

TI (transmit interrupt)

When 8051 finishes the transfer of 8-bit character, it raises TI flag to indicate that it is ready to

transfer another byte.

TI bit is raised at the beginning of the stop bit

RI (receive interrupt)

When 8051 receives data serially via RxD, it gets rid of the start and stop bits and places the byte

in SBUF register. It raises the RI flag bit to indicate that a byte has been received and should be

picked up before it is lost

RI is raised halfway through the stop bit

SBUF register

An 8-bit register used for serial communication

SBUF register stores a byte data to be transferred via the TxD line,

SBUF holds the byte of data when it is received by 8051 RxD line.

Steps in programming the 8051 to transfer character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 2 (8-bit

auto-reload) to set baud rate

2. The TH1 is loaded with one of the values to set baud rate for serial data transfer

Programming the MCU 8051 Page 22 of 48

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit

data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. TI is cleared by CLR TI instruction

6. The character byte to be transferred serially is written into SBUF register

7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see if the character has

been transferred completely

8. To transfer the next byte, go to step 5

Example

Write a program for the 8051 to transfer “YES” serially at 9600 baud, 8-bit data, 1 stop bit, do

this continuously

Solution:

MOV TMOD,#20H ;timer 1,mode 2(auto reload)

MOV TH1,#-3 ;9600 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

AGAIN:

MOV A,#”Y” ;transfer “Y”

ACALL TRANS

MOV A,#”E” ;transfer “E”

ACALL TRANS

MOV A,#”S” ;transfer “S”

ACALL TRANS

SJMP AGAIN ;keep doing it

;serial data transfer subroutine

TRANS: MOV SBUF,A ;load SBUF

HERE: JNB TI,HERE ;wait for the last bit

CLR TI ;get ready for next byte

RET

 Steps in programming the 8051 to receive character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 2 (8-bit

auto-reload) to set baud rate,

2. TH1 is loaded to set baud rate,

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit

data is framed with start and stop bits,

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an entire character

has been received yet

7. When RI is raised, SBUF has the byte, its contents are moved into a safe place

8. To receive the next character, go to step 5

Programming the MCU 8051 Page 23 of 48

Example:

Write a program for the 8051 to receive bytes of data serially, and put them in P1, set the baud

rate at 4800, 8-bit data, and 1 stop bit.

Solution:

MOV TMOD,#20H ;timer 1,mode 2(auto reload)

MOV TH1,#-6 ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

HERE: JNB RI,HERE ;wait for char to come in

MOV A,SBUF ;saving incoming byte in A

MOV P1,A ;send to port 1

CLR RI ;get ready to receive next byte

SJMP HERE ;keep getting data

Example 10-5

Assume that the 8051 serial port is connected to the COM port of IBM PC, and on the PC the

terminal.exe program is used to send and receive data serially.

P1 and P2 of the 8051 are connected to LEDs and switches, respectively.

Write an 8051 program to (a) send to PC the message “We Are Ready”, (b) receive any data

send by PC and put it on LEDs connected to P1, and (c) get data on switches connected to P2

and send it to PC serially.

The program should perform part (a) once, but parts (b) and (c) continuously, use 4800 baud

rate.

Solution:

ORG 0

MOV P2,#0FFH ;make P2 an input port

MOV TMOD,#20H ;timer 1, mode 2

MOV TH1,#0FAH ;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

MOV DPTR,#MYDATA ;load pointer for message

H_1: CLR A

MOV A,@A+DPTR ;get the character

JZ B_1 ;if last character get out

ACALL SEND ;otherwise call transfer

INC DPTR ;next one

SJMP H_1 ;stay in loop

B_1: MOV A,P2 ;read data on P2

ACALL SEND ;transfer it serially

ACALL RECV ;get the serial data

MOV P1,A ;display it on LEDs

SJMP B_1 ;stay in loop indefinitely

Programming the MCU 8051 Page 24 of 48

;----serial data transfer. ACC has the data------

SEND: MOV SBUF,A ;load the data

H_2: JNB TI,H_2 ;stay here until last bit gone

CLR TI ;get ready for next char

RET ;return to caller

;----Receive data serially in ACC----------------

RECV: JNB RI,RECV ;wait here for char

MOV A,SBUF ;save it in ACC

CLR RI ;get ready for next char

RET ;return to caller

;-----The message---------------

MYDATA: DB “We Are Ready”,0

END

Programming the MCU 8051 Page 25 of 48

Interrupt programming

Six interrupts are provided in 8051

a. Reset – power-up reset

b. Two timers interrupts for timer 0 and timer 1

c. Two hardware external interrupts INT0 and INT1 using pins P3.2 and P3.3

d. Serial communication interrupt for both receive and transfer

Note:

• Upon reset, all interrupts are disabled (masked),

• The interrupts must be enabled by software so that the microcontroller responds to them

Interrupts and interrupt vector table

Priority

Upon

Reset

Interrupt ROM

Location

Pin

 Reset 0000

1 External Interrupt 0 (INT0) 0003 P3.2

2 Timer Interrupt 0 (TF0) 000B

3 External Interrupt 1 (INT1) 0013 P3.3

4 Timer Interrupt 1 (TF1) 001B

5 Serial Communication (RI and TI) 0023

Programming

Enable the interrupts through interrupt enable register IE for enabling (unmasking) and disabling

(masking) interrupts.

D7 D0

EA -- ET2 ES ET1 EX1 ET0 EX0

EA IE.7 Enables or disables all interrupts

-- IE.6 Not implemented, reserved for future use

ET2 IE.5 Enables or disables timer 2 overflow or capture interrupt (8952)

ES IE.4 Enables or disables the serial port interrupt

ET1 IE.3 Enables or disables timer 1 overflow interrupt

EX1 IE.2 Enables or disables external interrupt 1

ET0 IE.1 Enables or disables timer 0 overflow interrupt

EX0 IE.0 Enables or disables external interrupt 0

1 = Enable, 0 = disable

Example:

MOV IE,#10010110B ;enable serial, ;timer 0, EX1

or

SETB IE.7 ;EA=1, global enable

SETB IE.4 ;enable serial interrupt

SETB IE.1 ;enable Timer 0 interrupt

SETB IE.2 ;enable EX1

Programming the MCU 8051 Page 26 of 48

CLR IE.1 ;mask (disable) timer 0 interrupt only

CLR IE.7 ;disable all interrupt

Timer interrupt

If the timer interrupt in the IE register is enabled,

• The microcontroller is interrupted , whenever the timer rolls over, TF is raised,

• The microcontroller jumps to the interrupt vector table to service the ISR,

• In the ISR there is no need of for a “CLR TFx” instruction before RETI. Since the 8051

clears the TF flag internally upon jumping to the interrupt vector table.

• The instruction RETI at the end of ISR does

a. Popping off return address from stack into program counter to resume the main program,

b. Clear the TF0, TF1 and interrupt-in-service flags IE0 (TCON.1) , IE1 (TCON.3) in the

TCON register indicating that servicing of interrupt is over and a new interrupt can be

accepted.

Example

Write a program to generate a square wave if 50Hz frequency on pin P1.2. Use an interrupt for

timer 0. Assume that XTAL=11.0592 MHz

Solution:

ORG 0

LJMP MAIN

ORG 000BH ;ISR for Timer 0

CPL P1.2

MOV TL0,#00

MOV TH0,#0DCH

RETI

ORG 30H

;--------main program for initialization

MAIN: MOV TMOD,#00000001B ;Timer 0, Mode 1

MOV TL0,#00

MOV TH0,#0DCH

MOV IE,#82H ;enable Timer 0 interrupt

SETB TR0

HERE: SJMP HERE

END

Example

Write a program to create a square wave of 200 μs period (5000 Hz) on pin P2.1. Use timer 0 to

create the square wave. Assume that XTAL = 11.0592 MHz.

Use timer 0 in mode 2 (auto reload). TH0 = 100/1.085 us = 92

Solution:

ORG 0000H

LJMP MAIN

Programming the MCU 8051 Page 27 of 48

;ISR for timer 0 to generate square wave

ORG 000BH ;Timer 0 interrupt vector table

CPL P2.1 ;toggle P2.1 pin

RETI ;return from ISR

;The main program for initialization

ORG 0030H ;bypass vector table space

MAIN: MOV TMOD,#02H ;Timer 0, mode 2

MOV TH0,#-92 ;TH0=A4H for -92

MOV IE,#82H ;IE=10000010b enable Timer 0

SETB TR0 ;Start Timer 0

BACK: SJMP BACK ;keep looping unless interrupted by TF0

END

External hardware interrupts

• Two external hardware designated as INT0 and INT1 interrupts upon pins P3.2 and P3.3

• The interrupt vector table locations 0003H and 0013H are set aside for INT0 and INT1

• Two activation levels for the external hardware interrupts - Level triggered and Edge

triggered

• Level triggered interrupts is the default mode upon reset

level-triggered mode

• INT0 and INT1 pins are normally high

• A low-level signal triggers the interrupt

• The low-level signal at the INT pin must be removed before the execution of the last

instruction of the ISR, RETI; otherwise, another interrupt will be generated

Programming:

Configure IE register - enable bits EA (IE.7), EX1 (IE.2), / EX0 (IE.0)

Programming the MCU 8051 Page 28 of 48

Example:

Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes low,

it should turn on an LED. The LED is connected to P1.3 and is normally off. When it is turned

on it should stay on for a fraction of a second. As long as the switch is pressed low, the LED

should stay on.

Solution:

ORG 0000H

LJMP

;--ISR for INT1 to turn on LED

ORG 0013H ;INT1 ISR

SETB P1.3 ;turn on LED

MOV R3,#255

BACK: DJNZ R3,BACK ;keep LED on for a while

CLR P1.3 ;turn off the LED

RETI ;return from ISR

;--MAIN program for initialization

ORG 30H

MAIN: MOV IE,#10000100B ;enable external INT 1

HERE: SJMP HERE ;stay here until get interrupted

END

Edge-triggered mode

A falling edge (high to low) signal at pins INT0 and INT1 interrupts the micro-controller and

force to jump to location in the vector table to service the ISR.

Programming:

1. Configure IE register - enable bits EA (IE.7), EX1 (IE.2), / EX0 (IE.0)

2. Configure TCON register - enable bits IT1 (TCON.2), IT0 (TCON.0) to make an edge

triggered interrupt.

Example:

Assume that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the

falling edge of the pulse will send a high to P1.3, which is connected to an LED. The LED is

turned on and off at the same rate as the pulses are applied to the INT1 pin.

Solution:

ORG 0000H

LJMP MAIN

;--ISR for hardware interrupt INT1 to turn on LED

ORG 0013H ;INT1 ISR

SETB P1.3 ;turn on LED

MOV R3,#255

BACK: DJNZ R3,BACK ;keep the LED on for a while

CLR P1.3 ;turn off the LED

RETI ;return from ISR

Pressing the switch will cause the LED

to be turned on. If it is kept activated, the

LED stays on.

Programming the MCU 8051 Page 29 of 48

;------MAIN program for initialization

ORG 30H

MAIN: SETB TCON.2 ;make INT1 edge-triggered int.

MOV IE,#10000100B ;enable External INT 1

HERE: SJMP HERE ;stay here until get interrupted

END

Serial communication interrupt

• There is only one interrupt for serial communication used to both send and receive data

• Serial interrupt is invoked by TI or RI flags If the serial interrupt bit ES (IE.4) in the IE

register is enabled,

• When RI or TI is raised the 8051 gets interrupted and jumps to memory location 0023H to

execute the ISR

• In the ISR examine the TI and RI flags to see which one caused the interrupt and respond

accordingly

• TI (transfer interrupt) is raised when the last bit of the framed data, the stop bit, is transferred,

indicating that the SBUF register is ready to transfer the next byte

• RI (received interrupt) is raised when the entire frame of data, including the stop bit, is

received indicating that the the SBUF register has a byte.

• The last instruction before RETI is the clearing of RI or TI flags.

• The serial interrupt is used mainly for receiving data and is never used for sending data

serially.

Programming

Example

Write a program in which the 8051 reads data from P1 and writes it to P2 continuously while

giving a copy of it to the serial COM port to be transferred serially. Assume that

XTAL=11.0592. Set the baud rate at 9600.

Solution:

ORG 0000H

LJMP MAIN

ORG 23H

LJMP SERIAL ;jump to serial int ISR

ORG 30H

MAIN: MOV P1,#0FFH ;make P1 an input port

MOV TMOD,#20H ;timer 1, auto reload

MOV TH1,#0FDH ;9600 baud rate

MOV SCON,#50H ;8-bit,1 stop, ren enabled

MOV IE,10010000B ;enable serial int.

SETB TR1 ;start timer 1

BACK: MOV A,P1 ;read data from port 1

Programming the MCU 8051 Page 30 of 48

MOV SBUF,A ;give a copy to SBUF

MOV P2,A ;send it to P2

SJMP BACK ;stay in loop indefinitely

;-----------------serial port isr

ORG 100H

SERIAL: JB TI,TRANS ;jump if TI is high

MOV A,SBUF ;otherwise due to receive

CLR RI ;clear RI since CPU doesn’t

RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn’t

RETI ;return from ISR

END

Note:

• The moment a byte is written into SBUF it is framed and transferred serially.

• When the last bit (stop bit) is transferred the TI is raised,

• The serial interrupt is invoked if corresponding bit in the IE register is high.

• In the serial ISR, check for both TI and RI since both could have invoked interrupt

Programming the MCU 8051 Page 31 of 48

LCD Programming

LCD displays modules are the replacement for the 7 segment display due to their versatility.

LCD Connections

Programming

Consists of

1. Configure LCD through control register,

2. Send data through data register.

Configuration of LCD

a. Typical command codes to the control register

Ser. Description Code

1. Initialize LCD mode – lines, matrix 38H - (2 lines, 5x7 matrix)

2. Display ON, cursor ON 0EH

3. Clear LCD 01H

4. Shift cursor RIGHT 06H

5. Cursor line and position 86H – (line 1, position 6)

C6H – (line 2, position 6)

Consult data sheet of LCD for complete command code

b. Procedure

• Make pin RS (register select) = 0 – select control register,

• Make pin R/W (read or write select) = 0 for write,

• Send a high-to-low pulse to the E (enable) pin (through delay) to enable the internal latch of

the LCD for write,

• Give the LCD some delay.

Send data

c. Procedure

• Send data over D7 – D0 lines

• Make pin RS (register select) = 1 – select data register,

• Make pin R/W (read or write select) = 0 for write,

07 D0 LCD +5V

08 D1 Vcc 02

09 D2

10 D3 Vee 03

11 D4

12 D5 Vss 01

13 D6

14 D7

 RS R/W E

 4 5 6

8051

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P2.0

P2.1

P2.2

Programming the MCU 8051 Page 32 of 48

• Send a high-to-low pulse to the E pin (through delay) to enable the internal latch of the LCD

for write.

Sending code / data to the LCD with checking busy flag

Monitor the busy flag before issuing a command / data to the LCD.

d. Procedure

• Make pin RS (register select) = 0 – access control register,

• Make pin R/W (read or write select) = 1 for read,

• Send a low-to-high pulse to the E pin (through delay) to enable the internal latch of the LCD

for read,

• Loop until busy flag = 0.

After reading the command register if bit D7 (the busy flag) is high, the LCD is busy and no

information (commands or data) should be send to it. Only when D7=0, commands or data

can be send to LCD.

Program # 1

Calls a time delay before sending next data/command
; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0H

; configure LCD

MOV A,#38H ;init. lcd 2 lines, 5x7 matrix

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#0EH ;display on, cursor on

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#01 ;clear LCD

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#06H ;shift cursor right

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#84H ;cursor at line 1, pos. 4

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

; send data

MOV A,#’N’ ;display letter N

ACALL DATAWRT ;call display subroutine

ACALL DELAY ;give LCD some time

MOV A,#’O’ ;display letter O

ACALL DATAWRT ;call display subroutine

AGAIN: SJMP AGAIN ;stay here

COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to port 1

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DATAWRT: ;write data to LCD

MOV P1,A ;copy reg A to port 1

SETB P2.0 ;RS=1 for data

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DELAY: MOV R3,#50 ;50 or higher HERE2:

MOV R4,#255 ;R4 = 255

HERE: DJNZ R4,HERE ;stay until R4 becomes 0

DJNZ R3,HERE2

RET

END

Programming the MCU 8051 Page 33 of 48

Program # 2

Check busy flag before sending data, command to LCD
; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0H

MOV A,#38H ;init. LCD 2 lines ,5x7

matrix

ACALL COMMAND ;issue command

MOV A,#0EH ;LCD on, cursor on

ACALL COMMAND ;issue command

MOV A,#01H ;clear LCD command

ACALL COMMAND ;issue command

MOV A,#06H ;shift cursor right

ACALL COMMAND ;issue command

MOV A,#86H ;cursor: line 1, pos. 6

ACALL COMMAND ;command subroutine

MOV A,#’N’ ;display letter N

ACALL DATA_DISPLAY

MOV A,#’O’ ;display letter O

ACALL DATA_DISPLAY

HERE:SJMP HERE ;STAY HERE

COMMAND:

ACALL READY ;is LCD ready?

MOV P1,A ;issue command code

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 to write to LCD

SETB P2.2 ;E=1 for H-to-L pulse

CLR P2.2 ;E=0,latch in

RET

DATA_DISPLAY:

ACALL READY ;is LCD ready?

MOV P1,A ;issue data

SETB P2.0 ;RS=1 for data

CLR P2.1 ;R/W =0 to write to LCD

SETB P2.2 ;E=1 for H-to-L pulse

CLR P2.2 ;E=0,latch in

RET

READY:

SETB P1.7 ;make P1.7 input port

CLR P2.0 ;RS=0 access command reg

SETB P2.1 ;R/W=1 read command reg

;read command reg and check busy

flag

BACK:

SETB P2.2 ;E=1 for H-to-L pulse

CLR P2.2 ;E=0 H-to-L pulse

JB P1.7,BACK ;stay until busy flag=0

RET

END

Programming the MCU 8051 Page 34 of 48

Program # 3

Call a time delay before sending next data/command
; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0

MOV DPTR,#MYCOM

C1: CLR A

MOVC A,@A+DPTR

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

INC DPTR

JZ SEND_DAT

SJMP C1

SEND_DAT:

MOV DPTR,#MYDATA

D1: CLR A

MOVC A,@A+DPTR

ACALL DATAWRT ;call command subroutine

ACALL DELAY ;give LCD some time

INC DPTR

JZ AGAIN

SJMP D1

AGAIN: SJMP AGAIN ;stay here

COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to P1

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DATAWRT: ;write data to LCD

MOV P1,A ;copy reg A to port 1

SETB P2.0 ;RS=1 for data

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DELAY: MOV R3,#250 ;50 or higher

HERE2: MOV R4,#255 ;R4 = 255

HERE: DJNZ R4,HERE ;stay until R4 becomes 0

DJNZ R3,HERE2

RET

ORG 300H

MYCOM: DB 38H,0EH,01,06,84H,0

; commands and null

MYDATA: DB “HELLO”,0

END

Programming the MCU 8051 Page 35 of 48

Example

Write an 8051 C program to send letters ‘M’, ‘D’, and ‘E’ to the LCD using the busy flag

method.

Solution:
#include <reg51.h>

sfr ldata = 0x90; //P1=LCD data pins

sbit rs = P2^0;

sbit rw = P2^1;

sbit en = P2^2;

sbit busy = P1^7;

void main(){

lcdcmd(0x38);

lcdcmd(0x0E);

lcdcmd(0x01);

lcdcmd(0x06);

lcdcmd(0x86); //line 1, position 6

lcdcmd(‘M’);

lcdcmd(‘D’);

lcdcmd(‘E’);

}

void lcdcmd(unsigned char value){

lcdready(); //check the LCD busy flag

ldata = value; //put the value on the pins

rs = 0;

rw = 0;

en = 1; //strobe the enable pin

MSDelay(1);

en = 0;

return;

}

void lcddata(unsigned char value){

lcdready(); //check the LCD busy flag

ldata = value; //put the value on the pins

rs = 1;

rw = 0;

en = 1; //strobe the enable pin

MSDelay(1);

en = 0;

return;

}

void lcdready(){

busy = 1; //make the busy pin at input

rs = 0;

rw = 1;

while(busy==1){ //wait here for busy flag

en = 0; //strobe the enable pin

MSDelay(1);

en = 1;

}

void lcddata(unsigned int itime){

unsigned int i, j;

for(i=0;i<itime;i++)

for(j=0;j<1275;j++);

}

Programming the MCU 8051 Page 36 of 48

Keyboard interfacing

• Keyboards are organized in a matrix of rows and columns

• The CPU accesses both rows and columns through ports

• Thus, with two 8-bit ports, an 8 x 8 matrix of keys can be connected to a microprocessor

• When a key is pressed, a row and a column make a contact. Otherwise, there is no connection

between rows and columns .

Matrix Keyboard Connection to ports

• The rows are connected to an output port and

• The columns are connected to an input port.

• If all the rows are grounded and a key is pressed, one of the columns will have 0 since the

key pressed provides the path to ground.

• If no key has been pressed, reading the input port will yield 1s for all columns since they are

all connected to high (Vcc).

Detect a key press

• To detect a pressed key, the microcontroller grounds all rows by providing 0 to the output

latch,

• Then it reads the columns

• If the data read from columns is D3 – D0 =1111, no key has been pressed and the process

continues till key press is detected

• If one of the column bits has a zero, this means that a key press has occurred

For example, if D3 – D0 = 1101, this means that a key in the D1 column has been

pressed.

Detect row of key press

• To detect which row key press belongs to, it grounds one row at a time, reading the columns

each time.

• If it finds that all columns are high, this means that the key press cannot belong to that

row

• Therefore, it grounds the next row and continues until it finds the row the key press

belongs to

Programming the MCU 8051 Page 37 of 48

• Upon finding the row that the key press belongs to, it sets up the starting address for the

look-up table holding the scan codes (or ASCII) for that row

Identify the key press

• To identify the key press, it rotates the column bits, one bit at a time, into the carry flag and

checks to see if it is low

• Upon finding the zero, it pulls out the ASCII code for that key from the look-up table

otherwise, it increments the pointer to point to the next element of the look-up table .

Flowchart for the program

Programming the MCU 8051 Page 38 of 48

Program

Keyboard Program

;keyboard subroutine. This program sends the ASCII

;code for pressed key to P0.1

;P1.0-P1.3 connected to rows, P2.0-P2.3 to column

MOV P2,#0FFH ;make P2 an input port

K1:

MOV P1,#0 ;ground all rows at once

MOV A,P2 ;read all col,(ensure keys open)

ANL A,00001111B ;masked unused bits

CJNE A,#00001111B,K1 ;till all keys release

K2:

ACALL DELAY ;call 20 ms delay

MOV A,P2 ;see if any key is pressed

ANL A,00001111B ;mask unused bits

CJNE A,#00001111B,OVER ;key pressed, find row

SJMP K2 ;check till key pressed

OVER:

ACALL DELAY ;wait 20 ms debounce time

MOV A,P2 ;check key closure

ANL A,00001111B ;mask unused bits

CJNE A,#00001111B,OVER1 ;key pressed, find row

SJMP K2 ;if none, keep polling

OVER1: MOV P1, #11111110B ;ground row 0

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_0 ;key row 0, find col.

MOV P1,#11111101B ;ground row 1

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_1 ;key row 1, find col.

MOV P1,#11111011B ;ground row 2

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_2 ;key row 2, find col.

MOV P1,#11110111B ;ground row 3

MOV A,P2 ;read all columns

ANL A,#00001111B ;mask unused bits

CJNE A,#00001111B,ROW_3 ;key row 3, find col.

LJMP K2 ;if none, false input, repeat

ROW_0:

MOV DPTR,#KCODE0 ;set DPTR=start of row 0

SJMP FIND ;find col. Key belongs to

ROW_1:

MOV DPTR,#KCODE1 ;set DPTR=start of row

SJMP FIND ;find col. Key belongs to

ROW_2:

MOV DPTR,#KCODE2 ;set DPTR=start of row 2

SJMP FIND ;find col. Key belongs to

ROW_3:

MOV DPTR,#KCODE3 ;set DPTR=start of row 3

FIND: RRC A ;see if any CY bit low

JNC MATCH ;if zero, get ASCII code

INC DPTR ;point to next col. addr

SJMP FIND ;keep searching

MATCH: CLR A ;set A=0 (match is found)

MOVC A,@A+DPTR ;get ASCII from table

MOV P0,A ;display pressed key

LJMP K1

;ascii look-up table for each row

ORG 300H

KCODE0: DB ‘0’,’1’,’2’,’3’ ;ROW 0

KCODE1: DB ‘4’,’5’,’6’,’7’ ;ROW 1

KCODE2: DB ‘8’,’9’,’A’,’B’ ;ROW 2

KCODE3: DB ‘C’,’D’,’E’,’F’ ;ROW 3

END

Programming the MCU 8051 Page 39 of 48

Tentative Projects

a. Blinking single LED

b. Blinking LEDs animation connected to a port

c. Display a character on a 7 segment display

d. Display characters of a string one by one on a 7 segment display

e. Display characters of a string on array of five 7 segment display

f. Display characters of a string scrolling on array of five 7 segment display

g. Door entry audio alarm with door number display on a 7 segment display

h. Simple octal key board

i. 3x3 matrix key board

j. Automatic water pump controller

k. Interfacing LCD display controller

l. Display characters of a string scrolling on LCD display controller

m. Serial data transmission and reception with display on LCD display controller – close loop

to itself

n. Serial communication with PC using serial to usb converter / adruino controller (MPU

removed), putty.exe as hyperterminal

• Use 89C2051 (20 pin) Microprocessor

Hardware for MCU based projects:

Ser. Item Qty.

1 MCU – 89C2051 1

2 ZIF socket 20 pin 1

3 Resistance 8.2 kOm ¼ W

 1 kOm ¼ W

1

10

4 Capacitor (electrolytic)

10 µF 50V + 100 µF 50V

1+1

5 Capacitor (non electrolytic) 30 pF 2

6 Crystal 11.0592 MHz 1

7 Voltage regulator 7805 1

8 Micro switch push type 10

9 LED red 10

10 Breadboard 1

11 Transistors NPN low power

 Mid power

8

2

12 Battery (storage) 9V 1

13 Speaker (for computer) 1

14 Buzzer 5V 1

15 Musical IC UM66 1

16 7 segment display (common cathode) 5

17 20 char x 2 lines display controller 1

18 Connecting wires (multicolor)

19 Long nose mini pliers with cutter 1

Programming the MCU 8051 Page 40 of 48

Presentation:

Page 1 Name of University

 Subject Name & Code

Project name

 Participant name & ID

 Section & group

 Name of instructor

 Date of submission

Page 2 Objective of project

 Circuit diagram

 List of components

Page 3 Flowchart of program

Printout of program

Page 4 Brief description of program

 Achievements (Result)

Programming the MCU 8051 Page 41 of 48

The AT89C2051

Features of the AT89C2051 processor:

• Compatible with Intel 8051

• 2kB of internal FLASH program memory

• Voltage range from 2.7 to 6 V

• Clock 0 Hz to 24 MHz

• 128 bytes of internal RAM

• 15 programmable I/O pins

• Two 16-bit counters/timers

• Analog comparator

• 5 interrupt sources

• Programmable UART - (RS232)
•

• Port pins P1.2 to P1.7 provide internal pull-ups.

• Port pins P1.0 and P1.1 require external pull-ups.

• The analog comparator on pins P1.0 and P1.1. Its output is accessible to the software via the

P3.6 bit.

Voltage Regulator 7805

Programming the MCU 8051 Page 42 of 48

Common cathode & segment display pinout diagram

Musical IC UM66

Programming the MCU 8051 Page 43 of 48

TYPES OF INSTRUCTIONS

1. Arithmetic Instructions

2. Branch Instructions

3. Data Transfer Instructions

4. Logic Instructions

5. Bit-oriented Instructions

1. ARITHMETIC INSTRUCTIONS

Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator 1 1

ADD A,direct Adds the direct byte to the accumulator 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator 1 2

ADD A,#data Adds the immediate data to the accumulator 2 2

ADDC A,Rn Adds the register to the accumulator with a carry flag 1 1

ADDC A,direct Adds the direct byte to the accumulator with a carry flag 2 2

ADDC A,@Ri Adds the indirect RAM to the accumulator with a carry flag 1 2

ADDC A,#data Adds the immediate data to the accumulator with a carry flag 2 2

SUBB A,Rn Subtracts the register from the accumulator with a borrow 1 1

SUBB A,direct Subtracts the direct byte from the accumulator with a borrow 2 2

SUBB A,@Ri Subtracts the indirect RAM from the accumulator with a borrow 1 2

SUBB A,#data Subtracts the immediate data from the accumulator with a borrow 2 2

INC A Increments the accumulator by 1 1 1

INC Rn Increments the register by 1 1 2

INC Rx Increments the direct byte by 1 2 3

INC @Ri Increments the indirect RAM by 1 1 3

DEC A Decrements the accumulator by 1 1 1

DEC Rn Decrements the register by 1 1 1

DEC Rx Decrements the direct byte by 1 1 2

DEC @Ri Decrements the indirect RAM by 1 2 3

INC DPTR Increments the Data Pointer by 1 1 3

MUL AB Multiplies A and B 1 5

DIV AB Divides A by B 1 5

DA A Decimal adjustment of the accumulator according to BCD code 1 1

Programming the MCU 8051 Page 44 of 48

2. BRANCH INSTRUCTIONS

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Returns from subroutine 1 4

RETI Returns from interrupt subroutine 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel
Short jump (from –128 to +127 locations relative to

the following instruction)
2 3

JC rel Jump if carry flag is set. Short jump. 2 3

JNC rel Jump if carry flag is not set. Short jump. 2 3

JB bit,rel Jump if direct bit is set. Short jump. 3 4

JBC bit,rel Jump if direct bit is set and clears bit. Short jump. 3 4

JMP @A+DPTR Jump indirect relative to the DPTR 1 2

JZ rel Jump if the accumulator is zero. Short jump. 2 3

JNZ rel Jump if the accumulator is not zero. Short jump. 2 3

CJNE A,direct,rel
Compares direct byte to the accumulator and jumps if

not equal. Short jump.
3 4

CJNE A,#data,rel
Compares immediate data to the accumulator and

jumps if not equal. Short jump.
3 4

CJNE Rn,#data,rel
Compares immediate data to the register and jumps if

not equal. Short jump.
3 4

CJNE @Ri,#data,rel
Compares immediate data to indirect register and

jumps if not equal. Short jump.
3 4

DJNZ Rn,rel Decrements register and jumps if not 0. Short jump. 2 3

DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump. 3 4

NOP No operation 1 1

Programming the MCU 8051 Page 45 of 48

3. DATA TRANSFER INSTRUCTIONS

Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator 1 1

MOV A,direct Moves the direct byte to the accumulator 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator 1 2

MOV A,#data Moves the immediate data to the accumulator 2 2

MOV Rn,A Moves the accumulator to the register 1 2

MOV Rn,direct Moves the direct byte to the register 2 4

MOV Rn,#data Moves the immediate data to the register 2 2

MOV direct,A Moves the accumulator to the direct byte 2 3

MOV direct,Rn Moves the register to the direct byte 2 3

MOV direct,direct Moves the direct byte to the direct byte 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5

MOV @Ri,#data Moves the immediate data to the indirect RAM 2 3

MOV DPTR,#data Moves a 16-bit data to the data pointer 3 3

MOVC A,@A+DPTR
Moves the code byte relative to the DPTR to the

accumulator (address=A+DPTR)
1 3

MOVC A,@A+PC
Moves the code byte relative to the PC to the

accumulator (address=A+PC)
1 3

MOVX A,@Ri
Moves the external RAM (8-bit address) to the

accumulator
1 3-10

MOVX A,@DPTR
Moves the external RAM (16-bit address) to the

accumulator
1 3-10

MOVX @Ri,A
Moves the accumulator to the external RAM (8-bit

address)
1 4-11

MOVX @DPTR,A
Moves the accumulator to the external RAM (16-bit

address)
1 4-11

PUSH direct Pushes the direct byte onto the stack 2 4

POP direct Pops the direct byte from the stack/td> 2 3

XCH A,Rn Exchanges the register with the accumulator 1 2

XCH A,direct Exchanges the direct byte with the accumulator 2 3

XCH A,@Ri Exchanges the indirect RAM with the accumulator 1 3

XCHD A,@Ri
Exchanges the low-order nibble indirect RAM with the

accumulator
1 3

Programming the MCU 8051 Page 46 of 48

4. LOGIC INSTRUCTIONS

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediae data to direct register 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XORL direct,#data Exclusive OR immediate data to direct byte 3 4

CLR A Clears the accumulator 1 1

CPL A Complements the accumulator (1=0, 0=1) 1 1

SWAP A Swaps nibbles within the accumulator 1 1

RL A Rotates bits in the accumulator left 1 1

RLC A Rotates bits in the accumulator left through carry 1 1

RR A Rotates bits in the accumulator right 1 1

RRC A Rotates bits in the accumulator right through carry 1 1

Programming the MCU 8051 Page 47 of 48

5. BIT-ORIENTED INSTRUCTIONS

Mnemonic Description Byte Cycle

CLR C Clears the carry flag 1 1

CLR bit Clears the direct bit 2 3

SETB C Sets the carry flag 1 1

SETB bit Sets the direct bit 2 3

CPL C Complements the carry flag 1 1

CPL bit Complements the direct bit 2 3

ANL C,bit AND direct bit to the carry flag 2 2

ANL C,/bit AND complements of direct bit to the carry flag 2 2

ORL C,bit OR direct bit to the carry flag 2 2

ORL C,/bit OR complements of direct bit to the carry flag 2 2

MOV C,bit Moves the direct bit to the carry flag 2 2

MOV bit,C Moves the carry flag to the direct bit 2 3

Programming the MCU 8051 Page 48 of 48

Postscript

The materials included in this handout is of practical nature. Anyone can use any part of it

without restriction.

For any query feel free to drop mail at sadananduk13@gmail.com.

Good luck!

