
8051 CROSS ASSEMBLER
USER'S MANUAL

MetaLink Corporation
Chandler, Arizona

MetaLink Corporation
Chandler, Arizona
(480) 926-0797

EMAIL: asm51@metaice.com
FAX: (480) 926-1198

PURCHASE TERMS AND CONDITIONS

Since MetaLink Corporation does business and is located solely in the State of Arizona,
such orders or agreements and the rights of the parties hereunder shall be governed by
the laws of the State of Arizona.

LIMITED WARRANTY: METALINK MAKES NO WARRANTIES OTHER THAN THOSE
CONTAINED HEREIN AND METALINK EXPRESSLY DISCLAIMS ANY AND ALL
IMPLIED WARRANTIES, INCLUDING ANY WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR OF MERCHANTABILITY.

NOTICE

MetaLink Corp. reserves the right to make improvements in the software product
described in this manual as well as the manual itself at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

METALINK CORP. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE
DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY,
OR FITNESS FOR ANY PARTICULAR PURPOSE. METALINK CORP. SOFTWARE IS
SOLD OR LICENSED "AS IS". IN NO EVENT SHALL METALINK CORP. BE LIABLE
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE.

Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989, 1990 MetaLink Corp.

All rights are reserved. This manual may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form
without the prior agreement and written permission of MetaLink Corp.

MS-DOS is a trademark of Microsoft, Inc.

IBM is a registered trademark of IBM Corp.

Intel is a registered trademark of Intel Corp.

MetaLink is a trademark of MetaLink Corp.

Formatting of this manual provided by: David Fletcher

TABLE OF CONTENTS

8051 OVERVIEW . 1 - 1
Introduction . 1 - 1
8051 Architecture . 1 - 2
Summary of the 8051 Family of Components . 1 - 3
References . 1 - 5

8051 CROSS ASSEMBLER OVERVIEW . 2 - 1
Introduction . 2 - 1
Symbols . 2 - 1
Labels . 2 - 2
Assembler Controls . 2 - 3
Assembler Directives . 2 - 3
8051 Instruction Mnemonics . 2 - 4
Bit Addressing . 2 - 5
ASCII Literals . 2 - 6
Comments . 2 - 6
The Location Counter . 2 - 6
Syntax Summary . 2 - 6
Numbers and Operators . 2 - 7
Source File Listing . 2 - 9
Object File . 2 - 11

RUNNING THE 8051 CROSS ASSEMBLER . 3 - 1
Cross Assembler Files . 3 - 1
Minimum System Requirements . 3 - 1
Running the Cross Assembler . 3 - 2
Example Running the Cross Assembler . 3 - 3
DOS Hints and Suggestions . 3 - 4
References . 3 - 5

8051 INSTRUCTION SET . 4 - 1
Notation . 4 - 1
8051 Instruction Set Summary . 4 - 5
Notes . 4 - 9
References . 4 -10

8051 CROSS ASSEMBLER DIRECTIVES . 5 - 1
Introduction . 5 - 1
Symbol Definition Directives . 5 - 1
Segment Selection Directives . 5 - 4
Memory Reservation and Storage Directives . 5 - 5
Miscellaneous Directives . 5 - 7
Conditional Assembly Directives . 5 - 9

8051 CROSS ASSEMBLER CONTROLS . 6 - 1
Introduction . 6 - 1
Assembler Control Descriptions . 6 - 1

8051 CROSS ASSEMBLER MACRO PROCESSOR . 7 - 1
Introduction . 7 - 1
Macro Definition . 7 - 1
Special Macro Operators . 7 - 3
Using Macros . 7 - 3

NESTING MACROS . 7 - 4
LABELS IN MACROS . 7 - 6

8051 CROSS ASSEMBLER ERROR CODES . 8 - 1
Introduction . 8 - 1
Explanation of Error Messages . 8 - 2

SAMPLE PROGRAM AND LISTING . A - 1
Source File . A - 1
Source File Listing . A - 3

PRE-DEFINED BYTE AND BIT ADDRESSES . B - 1
Pre-defined Byte Addresses . B - 1
Pre-defined Bit Addresses . B -11

RESERVED SYMBOLS . C - 1

CROSS ASSEMBLER CHARACTER SET . D - 1

1 - 1

CHAPTER 1

8051 OVERVIEW

1.1. Introduction

The 8051 series of microcontrollers are highly integrated single chip microcomputers with
an 8-bit CPU, memory, interrupt controller, timers, serial I/O and digital I/O on a single
piece of silicon. The current members of the 8051 family of components include:

80C152JA/JB/JC/JD, 83C152JA/JC, 80C157
80C154, 83C154, 85C154
8044, 8344, 8744
80C451, 83C451, 87C451
80C452, 83C452, 87C452
8051, 8031, 8751, 80C51, 80C31, 87C51
80512, 80532
80515, 80535, 80C535, 80C515
80C517, 80C537
80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC
8052, 8032, 8752
80C321, 80C521, 87C521, 80C541, 87C541
8053, 9761, 8753
80C552, 83C552, 87C552
80C652, 83C652, 87C652
83C654, 87C654
83C751, 87C751
83C752, 87C752
80C851, 83C851

All members of the 8051 series of microcontrollers share a common architecture. They all
have the same instruction set, addressing modes, addressing range and memory spaces.
The primary differences between different 8051 based products are the amount of memory
on chip, the amount and types of I/O and peripheral functions, and the component's
technology (see Table 1-1).

In the brief summary of the 8051 architecture that follows, the term 8051 is used to mean
collectively all available members of the 8051 family. Please refer to reference (1) for a
complete description of the 8051 architecture and the specifications for all the currently
available 8051 based products.

1 - 2

1.2. 8051 Architecture

The 8051 is an 8-bit machine. Its memory is organized in bytes and practically all its
instruction deal with byte quantities. It uses an Accumulator as the primary register for
instruction results. Other operands can be accessed using one of the four different
addressing modes available: register implicit, direct, indirect or immediate. Operands
reside in one of the five memory spaces of the 8051.

The five memory spaces of the 8051 are: Program Memory, External Data Memory,
Internal Data Memory, Special Function Registers and Bit Memory.

The Program Memory space contains all the instructions, immediate data and constant
tables and strings. It is principally addressed by the 16-bit Program Counter (PC), but it
can also be accessed by a few instructions using the 16-bit Data Pointer (DPTR). The
maximum size of the Program Memory space is 64K bytes. Several 8051 family
members integrate on-chip some amount of either masked programmed ROM or EPROM
as part of this memory space (refer to Table 1-1).

The External Data Memory space contains all the variables, buffers and data structures
that can't fit on-chip. It is principally addressed by the 16-bit Data Pointer (DPTR),
although the first two general purpose register (R0,R1) of the currently selected register
bank can access a 256-byte bank of External Data Memory. The maximum size of the
External Data Memory space is 64Kbytes. External data memory can only be accessed
using the indirect addressing mode with the DPTR, R0 or R1.

The Internal Data Memory space is functionally the most important data memory space. In
it resides up to four banks of general purpose registers, the program stack, 128 bits of the
256-bit memory, and all the variables and data structures that are operated on directly by
the program. The maximum size of the Internal Data Memory space is 256-bytes.
However, different 8051 family members integrate different amounts of this memory space
on chip (see Amnt of RAM in Table 1-1). The register implicit, indirect and direct
addressing modes can be used in different parts of the Internal Data Memory space.

The Special Function Register space contains all the on-chip peripheral I/O registers as
well as particular registers that need program access. These registers include the Stack
Pointer, the PSW and the Accumulator. The maximum number of Special Function
Registers (SFRs) is 128, though the actual number on a particular 8051 family member
depends on the number and type of peripheral functions integrated on-chip (see Table
1-1). The SFRs all have addresses greater than 127 and overlap the address space of the
upper 128 bytes of the Internal Data Memory space. The two memory spaces are
differentiated by addressing mode. The SFRs can only be accessed using the Direct
addressing mode while the upper 128 bytes of the Internal Data Memory (if integrated
on-chip) can only be accessed using the Indirect addressing mode.

1 - 3

The Bit Memory space is used for storing bit variables and flags. There are specific
instructions in the 8051 that operate only in the Bit Memory space. The maximum size of
the Bit Memory space is 256-bits. 128 of the bits overlap with 16-bytes of the Internal Data
Memory space and 128 of the bits overlap with 16 Special Function Registers. Bits can
only be accessed using the bit instructions and the Direct addressing mode.

The 8051 has a fairly complete set of arithmetic and logical instructions. It includes an
8X8 multiply and an 8/8 divide. The 8051 is particularly good at processing bits
(sometimes called Boolean Processing). Using the Carry Flag in the PSW as a single bit
accumulator, the 8051 can move and do logical operations between the Bit Memory space
and the Carry Flag. Bits in the Bit Memory space can also be used as general purpose
flags for the test bit and jump instructions.

Except for the MOVE instruction, the 8051 instructions can only operate on either the
Internal Data Memory space or the Special Function Registers. The MOVE instruction
operates in all memory spaces, including the External Memory space and Program
Memory space.

Program control instructions include the usual unconditional calls and jumps as well as
conditional relative jumps based on the Carry Flag, the Accumulator's zero state, and the
state of any bit in the Bit Memory space. Also available is a Compare and
Jump if Not Equal instruction and a Decrement Counter and Jump if Not Zero loop
instruction. See Chapter 4 for a description of the complete 8051 instruction set.

1.3. Summary of the 8051 Family of Components
Component Technology Amnt of ROM Type of ROM Amnt of RAM No. of SFRs Serial I/O Type

8031 HMOS 0 -- 128bytes 21 Start/Stop Async

8051 HMOS 4Kbytes Masked 128bytes 21 Start/Stop Async

8751 HMOS 4Kbytes EPROM 128bytes 21 Start/Stop Async

8053 HMOS 8Kbytes Masked 128bytes 21 Start/Stop Async

9761 HMOS 8Kbytes EPROM 128bytes 21 Start/Stop Async

8751 HMOS 8Kbytes EPROM 128bytes 21 Start/Stop Async

80C31 CMOS 0 -- 128bytes 21 Start/Stop Async

80C51 CMOS 4Kbytes Masked 128bytes 21 Start/Stop Async

87C51 CMOS 4Kbytes EPROM 128bytes 21 Start/Stop Async

8032 HMOS 0 -- 256bytes 26 Start/Stop Async

8052 HMOS 8Kbytes Masked 256bytes 26 Start/Stop Async

8752 HMOS 8Kbytes EPROM 256bytes 26 Start/Stop Async

80C32 CMOS 0 -- 256bytes 26 Start/Stop Async

80C52 CMOS 8Kbytes Masked 256bytes 26 Start/Stop Async

87C52 CMOS 8Kbytes EPROM 256bytes 26 Start/Stop Async

8044 HMOS 4Kbytes Masked 192bytes 34 HDLC/SDLC

Component Technology Amnt of ROM Type of ROM Amnt of RAM No. of SFRs Serial I/O Type

1 - 4

8344 HMOS 0 -- 192bytes 34 HDLC/SDLC

8744 HMOS 4Kbytes EPROM 192bytes 34 HDLC/SDLC

80535 HMOS 0 -- 256bytes 41 Start/Stop Async

80515 HMOS 8Kbytes Masked 256bytes 41 Start/Stop Async

80C535 CHMOS 0 -- 256bytes 41 Start/Stop Async

80C515 CHMOS 8Kbytes Masked 256bytes 41 Start/Stop Async

80532 HMOS 0 -- 128bytes 28 Start/Stop Async

80512 HMOS 4Kbytes Masked 128bytes 28 Start/Stop Async

80C152 CHMOS 0 -- 256bytes 56 CSMA/CD

83C152 CHMOS 8Kbytes Masked 256bytes 56 CSMA/CD

80C154 CMOS 0 -- 256bytes 27 Start/Stop Async

83C154 CMOS 16Kbytes Masked 256bytes 27 Start/Stop Async

85C154 CMOS 16Kbytes EPROM 256bytes 27 Start/Stop Async

80C51FA CHMOS 0 -- 256 bytes 47 Start/Stop Async

83C51FA CHMOS 8Kbytes Masked 256 bytes 47 Start/Stop Async

87C51FA CHMOS 8Kbytes EPROM 256 bytes 47 Start/Stop Async

83C51FB CHMOS 16Kbytes Masked 256 bytes 47 Start/Stop Async

87C51FB CHMOS 16Kbytes EPROM 256 bytes 47 Start/Stop Async

83C51FB CHMOS 32Kbytes Masked 256 bytes 47 Start/Stop Async

87C51FB CHMOS 32Kbytes EPROM 256 bytes 47 Start/Stop Async

80C537 CHMOS 0 -- 256 bytes 41 Start/Stop Async

80C517 CHMOS 8Kbytes Masked 256 bytes 82 Start/Stop Async

80C451 CMOS 0 -- 128 bytes 24 Parallel I/F

83C451 CMOS 4Kbytes Masked 128 bytes 24 Parallel I/F

87C451 CMOS 4Kbytes EPROM 128 bytes 24 Parallel I/F

80C452 CHMOS 0 -- 256 bytes 55 U.P.I.

83C452 CHMOS 8Kbytes -- 256 bytes 55 U.P.I.

87C452 CHMOS 8Kbytes -- 256 bytes 55 U.P.I.

80C552 CMOS 0 -- 256 bytes 54 Start/Stop Async

83C552 CMOS 8Kbytes Masked 256 bytes 54 Start/Stop Async

87C552 CMOS 8Kbytes EPROM 256 bytes 54 Start/Stop Async

80C652 CMOS 0 -- 256 bytes 24 Start/Stop Async

83C652 CMOS 8Kbytes Masked 256 bytes 24 Start/Stop Async

87C652 CMOS 8Kbytes EPROM 256 bytes 24 Start/Stop Async

83C654 CMOS 16Kbytes Masked 256 bytes 24 Start/Stop Async

87C654 CMOS 16Kbytes EPROM 256 bytes 24 Start/Stop Async

83C752 CMOS 2Kbytes Masked 64 bytes 25 I2C

87C752 CMOS 2Kbytes EPROM 64 bytes 25 I2C

Component Technology Amnt of ROM Type of ROM Amnt of RAM No. of SFRs Serial I/O Type

1 - 5

83C751 CMOS 2Kbytes Masked 64 bytes 20 I2C

87C751 CMOS 2Kbytes EPROM 64 bytes 20 I2C

80C521 CMOS 0 -- 256 bytes 26 Start/Stop Async

80C321 CMOS 8Kbytes Masked 256 bytes 26 Start/Stop Async

87C521 CMOS 8Kbytes EPROM 256 bytes 26 Start/Stop Async

80C541 CMOS 16Kbytes Masked 256 bytes 26 Start/Stop Async

87C541 CMOS 16Kbytes EPROM 256 bytes 26 Start/Stop Async

80C851 CMOS 0 -- 128 bytes 21 Start/Stop Async

83C851 CMOS 4Kbytes Masked 128 bytes 21 Start/Stop Async

Table 1-1: 8051 Family of Components

1.4. References

1. Intel Corp., 8-Bit Embedded Controllers, 1990.
2. Siemens Corp., Microcontroller Component 80515, 1985.
3. AMD Corp., Eight-Bit 80C51 Embedded Processors, 1990.
4. Signetics Corp., Microcontroller Users' Guide, 1989.

2 - 1

CHAPTER 2

8051 CROSS ASSEMBLER OVERVIEW

2.1. Introduction

The 8051 Cross Assembler takes an assembly language source file created with a text
editor and translates it into a machine language object file. This translation process is
done in two passes over the source file. During the first pass, the Cross Assembler builds
a symbol table from the symbols and labels used in the source file. It's during the second
pass that the Cross Assembler actually translates the source file into the machine
language object file. It is also during the second pass that the listing is generated.

The following is a discussion of the syntax required by the Cross Assembler to generate
error free assemblies.

2.2. Symbols

Symbols are alphanumeric representations of numeric constants, addresses, macros, etc.
The legal character set for symbols is the set of letters, both upper and lower case
(A..Z,a..z), the set of decimal numbers (0..9) and the special characters, question mark (?)
and underscore (_). To ensure that the Cross Assembler can distinguish between a
symbol and a number, all symbols must start with either a letter or special character (? or
_). The following are examples of legal symbols:

PI
Serial_Port_Buffer
LOC_4096
?_?_?

In using a symbol, the Cross Assembler converts all letters to upper case. As a result, the
Cross Assembler makes no distinction between upper and lower case letters. For
example, the following two symbols would be seen as the same symbol by the Cross
Assembler:

Serial_Port_Buffer
SERIAL_PORT_BUFFER

Symbols can be defined only once. Symbols can be up to 255 characters in length, though
only the first 32 are significant. Therefore, for symbols to be unique, they must have a
unique character pattern within the first 32 characters. In the following example, the first
two symbols would be seen by the Cross Assembler as duplicate symbols, while the third
and fourth symbols are unique.

2 - 2

BEGINNING_ADDRESS_OF_CONSTANT_TABLE_1
BEGINNING_ADDRESS_OF_CONSTANT_TABLE_2

CONSTANT_TABLE_1_BEGINNING_ADDRESS
CONSTANT_TABLE_2_BEGINNING_ADDRESS

There are certain symbols that are reserved and can't be defined by the user. These
reserved symbols are listed in Appendix C and include the assembler directives, the 8051
instruction mnemonics, implicit operand symbols, and the following assembly time
operators that have alphanumeric symbols: EQ, NE, GT, GE, LT, LE, HIGH, LOW, MOD,
SHR, SHL, NOT, AND, OR and XOR.

The reserved implicit operands include the symbols A, AB, C, DPTR, PC, R0, R1, R2, R3,
R4, R5, R6, R7, AR0, AR1, AR2, AR3, AR4, AR5, AR6 and AR7. These symbols are
used primarily as instruction operands. Except for AB, C, DPTR or PC, these symbols
can also be used to define other symbols (see EQU directive in Chapter 5).

The following are examples of illegal symbols with an explanation of why they are illegal:

1ST_VARIABLE (Symbols can not start with a number.)
ALPHA# (Illegal character "#" in symbol.)
MOV (8051 instruction mnemonic)
LOW (Assembly operator)
DATA (Assembly directive)

2.3. Labels

Labels are special cases of symbols. Labels are used only before statements that have
physical addresses associated with them. Examples of such statements are assembly
language instructions, data storage directives (DB and DW), and data reservation
directives (DS and DBIT). Labels must follow all the rules of symbol creation with the
additional requirement that they be followed by a colon. The following are legal examples
of label uses:

TABLE_OF_CONTROL_CONSTANTS:
 DB 0,1,2,3,4,5 (Data storage)
MESSAGE: DB 'HELP' (Data storage)
VARIABLES: DS 10 (Data reservation)
BIT_VARIABLES: DBIT 16 (Data reservation)
START: MOV A,#23 (Assembly language instruction)

2 - 3

2.4. Assembler Controls

Assembler controls are used to control where the Cross Assembler gets its input source
file, where it puts the object file, and how it formats the listing file. Table 2-1 summarizes
the assembler controls available. Refer to Chapter 6 for a detailed explanation of the
controls.

$DATE(date) Places date in page header $EJECT Places a form feed in listing
$INCLUDE(file) Inserts file in source program $LIST Allows listing to be output
$NOLIST Stops outputting the listing $MOD51 Uses 8051 predefined symbols
$MOD52 Uses 8052 predefined symbols $MOD44 Uses 8044 predefined symbols
$NOMOD No predefined symbols used $OBJECT(file) Places object output in file
$NOOBJECT No object file is generated $PAGING Break output listing into pages
$NOPAGING Print listing w/o page breaks $PAGELENGTH(n) No. of lines on a listing page
$PAGEWIDTH(n) No. of columns on a listing page $PRINT(file) Places listing output in file
$NOPRINT Listing will not be output $SYMBOLS Append symbol table to listing
$NOSYMBOLS Symbol table will not be output $TITLE(string) Places string in page header

Table 2-1: Summary of Cross Assembler Controls

As can be seen in Table 2-1, all assembler controls are prefaced with a dollar sign ($). No
spaces or tabs are allowed between the dollar sign and the body of the control. Also, only
one control per line is permitted. However, comments can be on the same line as a
control. The following are examples of assembler controls:

$TITLE(8051 Program Ver. 1.0)
$LIST
$PAGEWIDTH(132)

2.5. Assembler Directives

Assembler directives are used to define symbols, reserve memory space, store values in
program memory and switch between different memory spaces. There are also directives
that set the location counter for the active segment and identify the end of the source file.
Table 2-2 summarizes the assembler directives available. These directives are fully
explained in Chapter 5.

EQU Define symbol DATA Define internal memory symbol
IDATA Defin indirectly addressed internal memory

symbol
XDATA Define external memory symbol

BIT Define internal bit memory symbol CODE Define program memory symbol
DS Reserve bytes of data memory DBIT Reserve bits of bit memory
DB Store byte values in program memory DW Store word values in program memory
ORG Set segment location counter END End of assembly language source file
CSEG Select program memory space DSEG Select internal memory data space
XSEG Select external memory data space ISEG Select indirectly addressed internal

memory space
BSEG Select bit addressable memory space IF Begin conditional assembly block
ELSE Alternative conditional assembly block ENDIF End conditional assembly block
USING Select register bank

Table 2-2: Summary of Cross Assembler Directives

2 - 4

Only one directive per line is allowed, however comments may be included. The following
are examples of assembler directives:

TEN EQU 10
RESET CODE 0
 ORG 4096

2.6. 8051 Instruction Mnemonics

The standard 8051 Assembly Language Instruction mnemonics plus the generic CALL and
JMP instructions are recognized by the Cross Assembler and are summarized in Table
2-3. See Chapter 4 for the operation of the individual instructions.

ACALL Absolute call ADD Add ADDC Add with carry
AJMP Absolute jump ANL Logical and CJNE Compare & jump if not equal
CLR Clear CPL Complement DA Decimal adjust
DEC Decrement DIV Divide DJNZ Decrement & jump if not zero
INC Increment JB Jump if bit set JBC Jump & clear bit if bit set
JC Jump if carry set JMP Jump JNB Jump if bit not set
JNC Jump if carry not set JNZ Jump if accum. not zero JZ Jump if accumulator zero
LCALL Long call LJMP Long jump MOV Move
MOVC Move code MOVX Move external MUL Multiply
NOP No operation ORL Inclusive or POP Pop stack
PUSH Push stack RET Return RETI Return from interrupt
RL Rotate left RLC Rotate left thru carry RR Rotate right
RRC Rotate right thru carry SETB Set bit SJMP Short jump
SUBB Subtract with borrow SWAP Swap nibbles XCH Exchange bytes
XCHD Exchange digits XRL Exclusive or CALL Generic call

Table 2-3: 8051 Instructions and Mnemonics

When the Cross Assembler sees a generic CALL or JMP instruction, it will try to translate
the instruction into its most byte efficient form. The Cross Assembler will translate a CALL
into one of two instructions (ACALL or LCALL) and it will translate a generic JMP into one
of three instructions (SJMP, AJMP or LJMP). The choice of instructions is based on which
one is most byte efficient. The generic CALL or JMP instructions saves the programmer
the trouble of determining which form is best.

However, generic CALLs and JMPs do have their limitations. While the byte efficiency
algorithm works well for previously defined locations, when the target location of the CALL
or JMP is a forward location (a location later on in the program), the assembler has no way
of determining the best form of the instruction. In this case the Cross Assembler simply
puts in the long version (LCALL or LJMP) of the instruction, which may not be the most
byte efficient. NOTE that the generic CALLs and JMPs must not be used for the 751/752
device as LCALL and LJMP are not legal instructions for those devices. Instead use
ACALL and AJMP explicitly.

2 - 5

For instructions that have operands, the operands must be separated from the mnemonic
by at least one space or tab. For instructions that have multiple operands, each operand
must be separated from the others by a comma.

Two addressing modes require the operands to be preceded by special symbols to
designate the addressing mode. The AT sign (@) is used to designate the indirect
addressing mode. It is used primarily with Register 0 and Register 1 (R0, R1), but is can
also be used with the DPTR in the MOVX and the Accumulator in MOVC and JMP
@A+DPTR instructions. The POUND sign (#) is used to designate an immediate
operand. It can be used to preface either a number or a symbol representing a number.

A third symbol used with the operands actually specifies an operation. The SLASH (/) is
used to specify that the contents of a particular bit address is to be complemented before
the instruction operation. This is used with the ANL and ORL bit instructions.

Only one assembly language instruction is allowed per line.
Comments are allowed on the same line as an instruction, but only after all operands have
been specified. The following are examples of instruction statements:

START: LJMP INIT
 MOV @R0,Serial_Port_Buffer
 CJNE R0 , #TEN, INC_TEN
 ANL C,/START_FLAG
 CALL GET_BYTE
 RET

2.7. Bit Addressing

The period (.) has special meaning to the Cross Assembler when used in a symbol. It is
used to explicitly specify a bit in a bit-addressable symbol. For example, it you wanted to
specify the most significant bit in the Accumulator, you could write ACC.7, where ACC was
previously defined as the Accumulator address. The same bit can also be selected using
the physical address of the byte it's in. For example, the Accumulator's physical address is
224. The most significant bit of the Accumulator can be selected by specifying 224.7. If
the symbol ON was defined to be equal to the value 7, you could also specify the same bit
by either ACC.ON or 224.ON.

2 - 6

2.8. ASCII Literals

Printable characters from the ASCII character set can be used directly as an immediate
operand, or they can used to define symbols or store ASCII bytes in Program Memory.
Such use of the ASCII character set is called ASCII literals. ASCII literals are identified by
the apostrophe (') delimiter. The apostrophe itself can be used as an ASCII literal. In this
case, use two apostrophes in a row. Below are examples of using ASCII literals.

 MOV A,#'m' ;Load A with 06DH (ASCII m)
QUOTE EQU '''' ;QUOTE defined as 27H (ASCII single quote)
 DB '8051' ;Store in Program Memory

2.9. Comments

Comments are user defined character strings that are not processed by the Cross
Assembler. A comment begins with a semicolon (;) and ends at the carriage return/line
feed pair that terminates the line. A comment can appear anywhere in a line, but it has to
be the last field. The following are examples of comment lines:

; Begin initialization routine here
$TITLE(8051 Program Vers. 1.0) ;Place version number here
TEN EQU 10 ;Constant
 ; Comment can begin anywhere in a line
 MOV A,Serial_Port_Buffer ; Get character

2.10. The Location Counter

The Cross Assembler keeps a location counter for each of the five segments (code,
internal data, external data, indirect internal data and bit data). Each location counter is
initialized to zero and can be modified using Assembler Directives described in Chapter
5.

The dollar sign ($) can be used to specify the current value of the location counter of the
active segment. The following are examples of how this can be used:

 JNB FLAG,$;Jump on self until flag is reset
CPYRGHT: DB 'Copyright, 1983'
CPYRGHT_LENGTH
 EQU $-CPYRGHT-1 ;Calculate length of copyright message

2.11. Syntax Summary

Since the Cross Assembler essentially translates the source file on a line by line basis,
certain rules must be followed to ensure the translation process is done correctly. First of

2 - 7

all, since the Cross Assembler's line buffer is 256 characters deep, there must always be a
carriage return/line feed pair within the first 256 columns of the line.

A legal source file line must begin with either a control, a symbol, a label, an instruction
mnemonic, a directive, a comment or it can be null (just the carriage return/line feed pair).
Any other beginning to a line will be flagged as an error.

While a legal source file line must begin with one of the above items, the item doesn't have
to begin in the first column of the line. It only must be the first field of the line. Any number
(including zero) of spaces or tabs, up to the maximum line size, may precede it.

Comments can be placed anywhere, but they must be the last field in any line.

2.12. Numbers and Operators

The Cross Assembler accepts numbers in any one of four radices: binary, octal, decimal
and hexadecimal. To specify a number in a specific radix, the number must use the
correct digits for the particular radix and immediately following the number with its radix
designator. Decimal is the default radix and the use of its designator is optional. An
hexadecimal number that would begin with a letter digit must be preceded by a 0 (zero) to
distinguish it from a symbol. The internal representation of numbers is 16-bits, which limits
the maximum number possible. Table 2-4 summarizes the radices available.

RADIX DESIGNATOR LEGAL DIGITS MAXIMUM LEGAL
NUMBER

Binary B 0,1 1111111111111111B
Octal O, Q 0,1,2,3,4,5,6,7 177777O

Decimal D,(default) 0,1,2,3,4,5,6,7,8,9 65535D
Hexadecimal H 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 0FFFFH

Table 2-4: Cross Assembler Radices

No spaces or tabs are allowed between the number and the radix designator. The letter
digits and radix designators can be in upper or lower case. The following examples list the
decimal number 2957 in each of the available radices:

101110001101B (Binary)
5615o or 5615Q (Octal)
2957 or 2957D (Decimal)
0B8DH, 0b8dh (Hexadecimal)

2 - 8

When using radices with explicit bit symbols, the radix designator follows the byte portion
of the address as shown in the following examples:

0E0H.7 Bit seven of hexadecimal address 0E0
200Q.ON Bit ON of octal address 200

The Cross Assembler also allows assembly time evaluation of arithmetic expressions up
to thirty-two levels of embedded parentheses. All calculations use integer numbers and
are done in sixteen bit precision.

OPERATOR SYMBOL OPERATION
+ Addition, Unary positive
- Subtraction, Unary negation (2's complement)
* Multiplication
/ Integer division (no remainder)
MOD Modulus (remainder of integer division)
SHR Shift right
SHL Shift left
NOT Logical negation (1's complement)
AND Logical and
OR Inclusive or
XOR Exclusive or
LOW Low order 8-bits
HIGH High order 8-bits
EQ, = Relational equal
NE, <> Relational not equal
GT, > Relational greater than
GE, >= Relational greater than or equal
LT, < Relational less than
LE, <= Relational less than or equal
() Parenthetical statement

Table 2-5: Assembly Time Operations

The relational operators test the specified values and return either a True or False. False
is represented by a zero value, True is represented by a non zero value (the True condition
actually returns a 16-bit value with every bit set; i.e., 0FFFFH). The relational operators are
used primarily with the Conditional Assembly capability of the Cross Assembler.

Table 2-5 lists the operations available while Table 2-6 lists the operations precedence in
descending order. Operations with higher precedence are done first. Operations with
equal precedence are evaluated from left to right.

2 - 9

OPERATION PRECEDENCE
(,) HIGHEST
HIGH,LOW
*,/,MOD,SHR,SHL
+,-
EQ,LT,GT,LE,GE,NE,=,<,>,<=,>=,<>
NOT
AND
OR,XOR LOWEST

Table 2-6: Operators Precedence

The following are examples of all the available operations and their result:

HIGH(0AADDH) will return a result of 0AAH
LOW(0AADDH) will return a result of 0DDH
7*4 will return a result of 28
7/4 will return a result of 1
7 MOD 4 will return a result of 3
1000B SHR 2 will return a result of 0010B
1010B SHL 2 will return a result of 101000B
10+5 will return a result of 15
+72 will return a result of 72
25-17 will return a result of 8
-1 will return a result of 1111111111111111B
NOT 1 will return a result of 1111111111111110B
7 EQ 4, 7 = 4 will return a result of 0
7 LT 4, 7 < 4 will return a result of 0
7 GT 4, 7 > 4 will return a result of 0FFFFH
7 LE 4, 7 <= 4 will return a result of 0
7 GE 4, 7 >= 4 will return a result of 0FFFFH
7 NE 4, 7 <> 4 will return a result of 0FFFFH
1101B AND 0101B will return a result of 0101B
1101B OR 0101B will return a result of 1101B
1101B XOR 0101B will return a result of 1000B

2.13. Source File Listing

The source file listing displays the results of the Cross Assembler translation. Every line of
the listing includes a copy of the original source line as well as a line number and the Cross
Assembler translation.

2 - 10

For example, in translating the following line taken from the middle of a source file:

TRANS: MOV R7,#32 ;Set up pointer

 the listing will print:

002F 7920 152 TRANS: MOV R1,#32 ;Set up pointer

The '002F' is the current value of the location counter in hexadecimal. The '7920' is the
translated instruction, also in hexadecimal. The '152' is the decimal line number of the
current assembly. After the line number is a copy of the source file line that was translated.

Another example of a line in the listing file is as follows:

015B 13 =1 267 +2 RRC A

Here we see two additional fields. The '=1' before the line number gives the current
nesting of include files. The '+2' after the line number gives the current macro nesting. This
line essentially says that this line comes from a second level nesting of a macro that is part
of an include file.

Another line format that is used in the listing is that of symbol definition. In this case the
location counter value and translated instruction fields described above are replaced with
the definition of the symbol. The following are examples of this:

 00FF 67 MAX_NUM EQU 255
 REG 68 COUNTER EQU R7

The '00FF' is the hexadecimal value of the symbol MAX_NUM. Again, '67'is the decimal
line number of the source file and the remainder of the first line is a copy of the source file.
In the second line above, the 'REG' shows that the symbol COUNTER was defined to be a
general purpose register.

Optionally, a listing can have a page header that includes the name of the file being
assembled, title of program, date and page number. The header and its fields are
controlled by specific Assembler Controls (see Chapter 6).

The default case is for a listing to be output as a file on the default drive with the same
name as the entered source file and an extension of .LST. For example, if the source file
name was PROGRAM.ASM, the listing file would be called PROGRAM.LST. Or if the
source file was called MODULE1, the listing file would be stored as MODULE1.LST. The
default can be changed using the $NOPRINT and $PRINT() Assembler Controls (see
Chapter 6).

2 - 11

2.14. Object File

The 8051 Cross Assembler also creates a machine language object file. The format of the
object file is standard Intel Hexadecimal. This Hexadeciaml file can be used to either
program EPROMs using standard PROM Programmers for prototyping, or used to pattern
masked ROMs for production.

The default case is for the object file to be output on the default drive with the same name
as the first source file and an extension of .HEX. For example, if the source file name was
PROGRAM.ASM, the object file would be called PROGRAM.HEX. Or if the source file
was called MODULE1, the object file would be stored as MODULE1.HEX. The default
can be changed using the $NOOBJECT and $OBJECT() Assembler Controls (see
Chapter 6).

3 - 1

CHAPTER 3

RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS SYSTEMS

3.1. Cross Assembler Files

The floppy disk you receive with this manual is an 8 sector, single-sided, double density
disk. This distribution disk will contain the following files:

ASM51.EXE The Cross Assembler program itself
MOD152 Source file for the $MOD152 control
MOD154 Source file for the $MOD154 control
MOD252 Source file for the $MOD252 control
MOD44 Source file for the $MOD44 control
MOD451 Source file for the $MOD451 control
MOD452 Source file for the $MOD452 control
MOD51 Source file for the $MOD51 control
MOD512 Source file for the $MOD512 control
MOD515 Source file for the $MOD515 control
MOD517 Source file for the $MOD517 control
MOD52 Source file for the $MOD52 control
MOD521 Source file for the $MOD521 control
MOD552 Source file for the $MOD552 control
MOD652 Source file for the $MOD652 control
MOD751 Source file for the $MOD751 control
MOD752 Source file for the $MOD752 control
MOD851 Source file for the $MOD851 control

There will also be one or more files with an extension of .ASM. These are sample
programs. Listings of these programs can be found in Appendix A.

DON'T USE THE DISTRIBUTION DISK. MAKE WORKING AND BACKUP COPIES
FROM THE DISTRIBUTION DISK AND THEN STORE THE DISTRIBUTION DISK IN A
SAFE PLACE.

3.2. Minimum System Requirements

With DOS 2.0 or later - 96K RAM
1 Floppy Disk Drive

3 - 2

3.3. Running the Cross Assembler

Once you've created an 8051 assembly language source text file in accordance with the
guidelines in Chapter 2, you are now ready to run the Cross Assembler. Make sure your
system is booted and the DOS prompt (A>) appears on the screen. Place the disk with
the 8051 Cross Assembler on it in the drive and simply type (in all the following examples,
the symbol <CR> is used to show where the ENTER key was hit):

ASM51<CR>

If the 8051 Cross Assembler disk was placed in a drive other than the default drive, the
drive name would have to be typed first. For example, if the A drive is the default drive, and
the 8051 Cross Assembler is in the B drive, you would then type:

B:ASM51<CR>

After loading the program from the disk, the program's name, its version number and
general copyright information will be displayed on the screen. The Cross Assembler then
asks for the source file name to begin the assembly process.

Source file drive and name [.ASM]:

At this point, if you have only one floppy disk drive and the 8051 Cross Assembler and
source files are on separate disks, remove the disk with the 8051 Cross Assembler on it
and replace it with your source file disk.

Next, enter the source file name. If no extension is given, the Cross Assembler will assume
an extension of .ASM. If no drive is given, the Cross Assembler will assume the default
drive. Since in every case where no drive is given, the Cross Assembler assumes the
default drive, it is generally a good practice to change the default drive to the drive with
your source files.

An alternative method for entering the source file is in the command line. In this case, after
typing in ASM51, type in a space and the source file name (again if no extension is given,
source file on the command line:

A>ASM51 B:CONTROL.A51<CR>

After the source file name has been accepted, the Cross Assembler will begin the
translation process. As it starts the first pass of its two pass process, it will print on the
screen:

First pass

3 - 3

At the completion of the first pass, and as it starts its second pass through the source file,
the Cross Assembler will display:

Second pass

When second pass is completed, the translation process is done and the Cross
Assembler will print the following message:

ASSEMBLY COMPLETE, XX ERRORS FOUND

XX is replaced with the actual number of errors that were found. Disk I/O may continue for
a while as the Cross Assembler appends the symbol table to the listing file.

3.4. Example Running the Cross Assembler

The following is an example of an actual run. The Cross Assembler will take the source file
SAMPLE.ASM from Drive A (default drive).

Again, the symbol <CR> is used to show where the ENTER key was hit.

A>ASM51<CR>

8 0 5 1 C R O S S A S S E M B L E R

Version 1.2

(c) Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990

MetaLink Corporation

Source file drive and name [.ASM]: sample<CR>

First pass

Second pass

ASSEMBLY COMPLETE, 0 ERRORS FOUND

3 - 4

3.5. DOS Hints and Suggestions

If you are using DOS 2.0 or later, you may want to use the BREAK ON command before
you run the Cross Assembler. This will allow you to abort (Ctrl-Break) the Cross
Assembler at any time. Otherwise, you will only be able to abort the Cross Assembler after
it completes a pass through the source file. If you are assembling a large file, this could
cause you a several minute wait before the Cross Assembler aborts.

The reason for this it that the default condition for DOS to recognizes a Ctrl-Break is
when the program (in this case the Cross Assembler) does keyboard, screen or printer I/O.
Unfortunately, the assembler does this very rarely (once each pass). By using the BREAK
ON command, DOS will recognize a Ctrl-Break for all I/O, including disk I/O. Since the
Cross Assembler is constantly doing disk I/O, with BREAK ON you can abort almost
immediately by hitting the Ctrl-Break keys.

So much for the good news. However, aborting a program can cause some undesirable
side-effects. Aborting a program while files are open causes DOS to drop some
information about the open files. This results in disk sectors being allocated when they are
actually free. Your total available disk storage shrinks. You should make the practice of
running CHKDSK with the /F switch periodically to recover these sectors.

The Cross Assembler run under DOS 2.0 or later supports redirection. You can specify the
redirection on the command line. Use the following form:

ASM51 <infile >outfile

"infile" and "outfile" can be any legal file designator. The Cross Assembler will take its
input from the "infile" instead of the keyboard and will send its output to "outfile" instead of
the screen.

Note that redirection of input in ASM51 is redundant since the assembler is an absolute
assembler and has no command line options other than the file name argument.

Output redirection is useful for speeding up the assembly process. Because
assembly-time errors are directed to std_err in DOS, an error listing cannot be redirected
to a file

To make the .lst file serve as an error-only file, use the Cross Assembler Controls $PRINT
(create a list file) $NOLIST (turn the listing off). Use the Cross Assembler Controls
$NOSYMBOLS to further compress the error-only listing resulting from the manipulation of
the list file controls. See Chapter 6 for more information. The errors will be listed in the .lst
file, as usual.

If the control $NOPRINT (see Chapter 6) is active, all error messages are send to the
screen.

3 - 5

3.6. References

1. IBM Corp., Disk Operating System, Version 1.10, May 1982.
2. IBM Corp., Disk Operating System, Version 2.00, January 1983.

4 - 1

CHAPTER 4

8051 INSTRUCTION SET

4.1. Notation

Below is an explanation of the column headings and column contents of the 8051
Instruction Set Summary Table that follows in this chapter.

MNEMONIC

The MNEMONIC column contains the 8051 Instruction Set Mnemonic and a brief
description of the instruction's operation.

OPERATION

The OPERATION column describes the 8051 Instruction Set in unambiguous symbology.
Following are the definitions of the symbols used in this column.

<n:m> Bits of a register inclusive. For example, PC<10:0> means
bits 0 through 10 inclusive of the PC. Bit 0 is always the least
significant bit

+ Binary addition
- Binary 2s complement subtraction
/ Unsigned integer division
X Unsigned integer multiplication
~ Binary complement (1s complement)
^ Logical And
v Inclusive Or
v Exclusive Or
> Greater than
<> Not equal to
= Equals
-> Is written into. For example, A + SOper - > A means the result

of the binary addition between A and the Source Operand is
written into A.

A The 8-bit Accumulator Register.
AC The Auxiliary Carry Flag in the Program Status Word
CF The Carry Flag in the Program Status Word
DOper The Destination Operand used in the instruction
DPTR 16-bit Data Pointer

4 - 2

Intrupt Active Flag Internal Flag that holds off interrupts until the Flag is cleared.
Jump Relative to PC A Jump that can range between -128 bytes and +127 bytes

from the PC value of the next instruction.
Paddr A 16-bit Program Memory address
PC The 8051 Program Counter. This 16-bit register points to the

byte in the Program Memory space that is fetched as part of
the instruction stream.

PM(addr) Byte in Program Memory space pointed to by addr.
Remainder Integer remainder of unsigned integer division
SOper The Source Operand used in the instruction.
SP 8-bit Stack Pointer
STACK The Last In First Out data structure that is controlled by the

8-bit Stack Pointer (SP). Sixteen bit quantities are pushed on
the stack low byte first.

DEST ADDR MODE/SOURCE ADDR MODE

These two columns specify the Destination and Source Addressing Modes, respectively,
that are available for each instruction.

AB The Accumulator-B Register pair.
Accumulator Operand resides in the accumulator
Bit Direct Operand is the state of the bit specified by theBit Memory

address.
Carry Flag Operand is the state of the 1-bit Carry flag in the Program Status

Word (PSW).
Data Pointer Operand resides in the 16-bit Data Pointer Register
Direct Operand is the contents of the specified 8-bit Internal Data

Memory address from 0 (00H) to 127 (7FH) or a Special Function
Register address.

Indirect Operand is the contents of the address contained in the register
specified.

Immediate Operand is the next sequential byte after the instruction in
Program Memory space

Prog Direct 16-bit address in Program Memory Space.
Prog Indir Operand in Program Memory Space is the address contained in

the register specified.
Register Operand is the contents of the register specified.
Stack Operand is on the top of the Stack.

4 - 3

ASSEMBLY LANGUAGE FORM

This column contains the correct format of the instructions that are recognized by the Cross
Assembler.

A Accumulator
AB Accumulator-B Register pair.
C Carry Flag
Baddr Bit Memory Direct Address.
Daddr Internal Data Memory or Special Function Register Direct Address.
data 8-bit constant data.
data16 16-bit constant data.
DPTR 16-bit Data Pointer Register.
PC 16-bit Program Counter.
Paddr 16-bit Program Memory address
Ri Indirect Register. R0 or R1 are the only indirect registers.
Roff 8-bit offset for Relative Jump.
Rn Implicit Register. Each register bank has 8 general purpose registers,

designated R0, R1, R2, R3, R4, R5, R6, R7.

HEX OPCODE

This column gives the machine language hexadecimal opcode for each 8051 instruction.

BYT

This column gives the number of bytes in each 8051 instruction.

CYC

This column gives the number of cycles of each 8051 instruction. The time value of a cycle
is defined as 12 divided by the oscillator frequency. For example, if running an 8051 family
component at 12 MHz, each cycle takes 1 microsecond.

PSW

This column identifies which condition code flags are affected by the operation of the
individual instructions. The condition code flags available on the 8051 are the Carry Flag,
CF, the Auxiliary Carry Flag, AC, and the Overflow Flag, OV.

4 - 4

It should be noted that the PSW is both byte and bit directly addressable. Should the PSW
be the operand of an instruction that modifies it, the condition codes could be changed
even if this column states that the instruction doesn't affect them.

0 Condition code is cleared
1 Condition code is set
~ Condition code is modified by instruction
S Condition code is not affected by instruction

4 - 5

4.2. 8051 Instruction Set Summary
MNEMONIC OPERATION DEST

ADDR
MODE

SOURCE
ADDR
MODE

ASSEMBLY
LANGUAGE
FORM

HEX
OP-

CODE

B
Y
T

C
Y
C

PSW

C
F

A
C

O
V

ACALL
2K in Page (11 bits)
Absolute Call

PC + 2 -> STACK
SP + 2 -> SP
Paddr<10:0> -> PC<10:0>
PC<15:11> -> PC<15:11>

Prog Direct ACALL Paddr See
note 1

2 2 - - -

ADD
Add Operand to
Accumulator

A + SOper -> A Accumulator
“
“
“

Immediate
Direct

Indirect
Register

ADD
ADD
ADD
ADD

A,#data
A,Daddr
A,@Ri
A,Rn

24
25

26,27
28-2F

2
2
1
1

1
1
1
1

~ ~ ~

ADDC
Add Operand with
Carry to
Accumulator

A + SOper + C -> A Accumulator
“
“
“

Immediate
Direct

Indirect
Register

ADDC
ADDC
ADDC
ADDC

A,#data
A,Daddr
A,@Ri
A,Rn

34
35

36,37
38-3F

2
2
1
1

1
1
1
1

~ ~ ~

AJMP
2K in Page (11 bits)
Absolute Jump

Paddr<10:0> -> PC<10:0>
PC<15:11> -> PC<15:11>

Prog Direct AJMP Paddr
See

note 2 2 2 - - -

ANL
Logical AND of
Source Operand with
Destination Operand

SOper ^ DOper -> DOper Direct
“

Accumulator
“
“
“

Accumulator
Immediate
Immediate

Direct
Indirect
Register

ANL
ANL
ANL
ANL
ANL
ANL

Daddr,A
Daddr,#data
A,#data
A,Daddr
A,@Ri
A,Rn

52
53
54
55

56,57
58-5F

2
3
2
2
1
1

1
2
1
1
1
1

- - -

Logical AND of
Source Operand with
Carry Flag

SOper ^ CF -> CF Carry Flag Bit Direct ANL C,Baddr 82 2 2 ~ - -

Logical AND of
Source Operand
Complemented with
Carry Flag

~SOper ^ CF -> CF Carry Flag Bit Direct ANL C,/Baddr B0 2 2 ~ - -

CJNE
Compare Operands
and Jump Relative
if not Equal

Jump Relative to PC if
DOper <> SOper

Accumulator
“

Indirect
Register

Immediate
Direct

Immediate
“

CJNE
CJNE
CJNE
CJNE

A,#data,Roff
A,Daddr,Roff
@Ri,#data,Roff
Rn,#data,Roff

B4
B5

B6,B7
B8-Bf

3
3
3
3

2
2
2
2

~ - -

See note 3

CLR
Clear Accumulator 0 -> A Accumulator CLR A E4 1 1 - - -

Clear Carry Flag 0 -> CF Carry Flag CLR C C3 1 1 0 - -

Clear Bit Operand 0 -> DOper Bit Direct CLR Baddr C2 2 1 - - -

CPL
Complement
Accumulator

~A -> A Accumulator CPL A F4 1 1 - - -

Complement Carry
Flag

~CF -> CF Carry Flag CPL C B3 1 1 ~ - -

Complement Bit
Operand

~DOper -> DOper Bit Direct CPL Baddr B2 2 1 - - -

MNEMONIC OPERATION DEST
ADDR
MODE

SOURCE
ADDR
MODE

ASSEMBLY
LANGUAGE
FORM

HEX
OP-

CODE

B
Y
T

C
Y
C

PSW

C
F

A
C

O
V

4 - 6

DA
Decimal Adjust
Accumulator for
Addition

If (A<3:0> > 9) v AC
then A<3:0>+6 -> A<3:0>
If (A<7:4> > 9) v CF
then A<7:4>+6 -> A<7:4>

Accumulator DA A D4 1 1 ~ - -

See note 4

DEC
Decrement Operand DOper - 1 -> DOper Accumulator

Direct
Indirect
Register

DEC
DEC
DEC
DEC

A
Daddr
@Ri
Rn

14
15

16,17
18-1F

1
2
1
1

1
1
1
1

- - -

DIV
Divide Accumulator
by B Register

A / B -> A
Remainder -> B

AB DIV AB 84 1 4
0 - ~

See note 5

DJNZ
Decrement Operand
and Jump Relative
if Not Zero

DOper - 1 -> Doper
If DOper <> 0 then Jump
Relative to PC

Direct
Register

DJNZ
DJNZ

Daddr,Roff
Rn,Roff

D5
D8-DF

3
2

2
2

- - -

INC
Increment Operand DOper + 1 -> DOper Accumulator

Direct
Indirect
Register

Data Pointer

INC
INC
INC
INC
INC

A
Daddr
@Ri
Rn
DPTR

04
05

06,07
08-0F

A3

1
2
1
1
1

1
1
1
1
2

- - -

JB
Jump Relative if Bit
Operand is Set

If DOper = 1 then Jump
Relative to PC

Bit Direct JB Baddr,Roff 20 3 2 - - -

JBC
Jump Relative if Bit
Operand is Set and
Clear Bit Operand

If DOper = 1 then
0 -> DOper and Jump
Relative to PC

Bit Direct JBC Baddr,Roff 10 3 2 ~ ~ ~

See note 6

JC
Jump Relative if
Carry Flag is Set

If CF = 1 then Jump
Relative to PC

Carry Flag JC Roff 40 2 2 - - -

JMP
Jump Indirect DPTR<15:0> + A<7:0>

-> PC<15:0>
Prog Indir JMP @A+DPTR 73 1 2 - - -

JNB
Jump Relative if Bit
Operand is Clear

If DOper = 0 then Jump
Relative to PC

Bit Direct JNB Baddr,Roff 30 3 2 - - -

JNC
Jump Relative if
Carry Flag is Clear

If CF = 0 then Jump
Relative to PC

Carry Flag JNC Roff 50 2 2 - - -

JNZ
Jump Relative if the
Accumulator is Not
Zero

If A<7:0> <> 0 then
Jump Relative to PC

Accumulator JNZ Roff 70 2 2 - - -

JZ
Jump Relative if the
Accumulator is Zero

If A<7:0> = 0 then
Jump Relative to PC

Accumulator JZ Roff 60 2 2 - - -

MNEMONIC OPERATION DEST
ADDR
MODE

SOURCE
ADDR
MODE

ASSEMBLY
LANGUAGE
FORM

HEX
OP-

CODE

B
Y
T

C
Y
C

PSW

C
F

A
C

O
V

4 - 7

LCALL
Long (16 bits) Call PC + 3 -> STACK

SP + 2 -> SP
Paddr<15:0> -> PC<15:0>

Prog Direct LCALL Paddr 12 3 2 - - -

LJMP
Long (16 bits)
Absolute Jump

Paddr<15:0> -> PC<15:0> Prog Direct LJMP Paddr 02 3 2 - - -

MOV
Move Source
Operand to
Destination Operand

SOper -> DOper Accumulator
“
“
“

Direct
“
“
“
“

Indirect
“
“

Register
“
“

Data Pointer

Immediate
Direct

Indirect
Register

Accumulator
Immediate

Direct
Indirect
Register

Accumulator
Immediate

Direct
Accumulator
Immediate

Direct
Immediate

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

A,#data
A,Daddr
A,@Ri
A,Rn
Daddr,A
Daddr,#data
Daddr,Daddr
Daddr,@Ri
Daddr,Rn
@Ri,A
@Ri,#data
@Ri,Daddr
Rn,A
Rn,#data
Rn,Daddr
DPTR,#data16

74
E5

E6,E7
E8-EF

F5
75
85

86,87
88-8F
F6,F7
76,77
A6,A7
F8-FF
78-7F
A8-AF

90

2
2
1
1
2
3
3
2
2
1
2
2
1
2
2
3

1
1
1
1
1
2
2
2
2
1
1
2
1
1
2
2

- - -

Move Carry Flag to
Bit Destination
Operand

CF -> DOper Bit Direct Carry Flag MOV Baddr,C 92 2 2 - - -

Move Bit
Destination Operand
to Carry Flag

DOper -> CF Carry Flag Bit Direct MOV C,Baddr A2 2 1 ~ - -

MOVC
Move byte from
Program Memory to

PM(DPTR<15:0> + A<7:0>)
 -> A<7:0>

Accumulator Prog Ind MOVC A,@A+DPTR 93 1 2 - - -

PM(PC<15:0> + A<7:0>)
 -> A<7:0>

Accumulator Prog Ind MOVC A,@A+PC 83 1 2 - - -

MOVX
Move byte from
External Data
Memory to the
Accumulator

SOper -> A Accumulator
“

Indirect
“

MOVX
MOVX

A,@Ri
A,@DPTR

E2,E3
E0

1
1

2
2

- - -

Move byte in the
Accumulator to
External Data
Memory

A -> DOper Indirect
“

Accumulator
“

MOVX
MOVX

@Ri,A
@DPTR,A

F2,F3
F0

1
1

2
2

- - -

MUL
Multiply
Accumulator by B
Register

A X B -> B,A
(see note 7)

AB MUL AB A4 1 4 0 - ~

NOP
No Operation NOP 00 1 1 - - -

MNEMONIC OPERATION DEST
ADDR
MODE

SOURCE
ADDR
MODE

ASSEMBLY
LANGUAGE
FORM

HEX
OP-

CODE

B
Y
T

C
Y
C

PSW

C
F

A
C

O
V

4 - 8

ORL
Logical Inclusive
OR of Source
Operand with
Destination Operand

SOper v DOper -> DOper Direct
“

Accumulator
“
“
“

Accumulator
Immediate
Immediate

Direct
Indirect
Register

ORL
ORL
ORL
ORL
ORL
ORL

Daddr,A
Daddr,#data
A,#data
A,Daddr
A,@Ri
A,Rn

42
43
44
45

46,47
48-4F

2
3
2
2
1
1

1
2
1
1
1
1

- - -

Logical Inclusive
OR of Source
Operand with Carry
Flag

SOper v CF -> CF Carry Flag Bit Direct ORL C,Baddr 72 2 2 ~ - -

Logical Inclusive
OR of Source
Operand
Complemented with
Carry Flag

~SOper v CF -> CF Carry Flag Bit Direct ORL C,/Baddr A0 2 2 ~ - -

POP
Pop Stack and
Place in Destination
Operand

STACK -> Doper
SP - 1 -> SP

Direct Stack POP Daddr D0 2 2 - - -

PUSH
Push Source
Operand onto Stack

SP + 1 -> SP
SOper -> STACK

Stack Direct PUSH Daddr C0 2 2 - - -

RET
Return from
Subroutine

STACK -> PC<15:8>
SP - 1 -> SP
STACK -> PC<7:0>
SP - 1 -> SP

RET 22 1 2 - - -

RETI
Return from
Interrupt Routine

STACK -> PC<15:8>
SP - 1 -> SP
STACK -> PC<7:0>
SP - 1 -> SP
0 -> Intrupt Active Flag

RETI 32 1 2 - - -

RL
Rotate Accumulator
Left One Bit

A<6:0> -> A<7:1>
A<7> -> A<0>

Accumulator RL A 23 1 1 - - -

RLC
Rotate Accumulator
Left One Bit Thru
the Carry Flag

A<6:0> -> A<7:1>
CF -> A<0>
A<7> -> CF

Accumulator RLC A 33 1 1 ~ - -

RR
Rotate Accumulator
Right One Bit

A<7:1> -> A<6:0>
A<0> -> A<7>

Accumulator RR A 03 1 1 - - -

RRC
Rotate Accumulator
Right One Bit Thru
the Carry Flag

A<7:1> -> A<6:0>
CF -> A<7>
A<0> -> CF

Accumulator RRC A 13 1 1 ~ - -

SETB
Set Bit Operand 1 -> CF

1 -> DOper
Carry Flag
Bit Direct

SETB
SETB

C
Baddr

D3
D2

1
2

1
2

1
-

-
-

-
-

SJMP
Short (8 bits)
Relative Jump

Jump Relative to PC SJMP Roff 80 2 2 - - -

MNEMONIC OPERATION DEST
ADDR
MODE

SOURCE
ADDR
MODE

ASSEMBLY
LANGUAGE
FORM

HEX
OP-

CODE

B
Y
T

C
Y
C

PSW

C
F

A
C

O
V

4 - 9

SUBB
Subtract Operand
with Borrow from the
Accumulator

A - SOper - CF -> A Accumulator
“
“
“

Immediate
Direct

Indirect
Register

SUBB
SUBB
SUBB
SUBB

A,#data
A,Daddr
A,@Ri
A,Rn

94
95

96,97
98-9F

2
2
1
1

1
1
1
1

~ ~ ~

SWAP
Swap Nibbles within
the Accumulator

A<7:4> -> A<3:0>
A<3:0> -> A<7:4>

Accumulator SWAP A C4 1 1 - - -

XCH
Exchange bytes of
the Accumulator and
the Source Operand

SOper<7:0> -> A<7:0>
A<7:0> -> SOper<7:0>

Accumulator
“
“

Direct
Indirect
Register

XCH
XCH
XCH

A,Daddr
A,@Ri
A,Rn

C5
C6,C7
C8-CF

2
1
1

1
1
1

- - -

XCHD
Exchange the Least
Significant Nibble of
the Accumulator and
the Source Operand

SOper<3:0> -> A<3:0>
A<3:0> -> SOper<3:0>

Accumulator Indirect XCHD A,@Ri D6,D7 1 1 - - -

XRL
Logical Exclusive
OR of Source
Operand with
Destination Operand

SOper v DOper -> DOper Direct
“

Accumulator
“
“
“

Accumulator
Immediate
Immediate

Direct
Indirect
Register

XRL
XRL
XRL
XRL
XRL
XRL

Daddr,A
Daddr,#data
A,#data
A,Daddr
A,@Ri
A,Rn

62
63
64
65

66,67
68-6F

2
3
2
2
1
1

1
2
1
1
1
1

- - -

4.3. Notes

1 There are 8 possible opcodes. Starting with 11H as the opcode base, the final
opcode is formed by placing bits 8, 9 and 10 of the target address in bits 5, 6 and 7
of the opcode. The 8 possible opcodes in hexadecimal are then: 11, 31, 51, 71,
91, B1, D1, F1.

2 There are 8 possible opcodes. Starting with 01H as the opcode base, the final
opcode is formed by placing bits 8, 9 and 10 of the target address in bits 5, 6 and 7
of the opcode. The 8 possible opcodes in hexadecimal are then: 01, 21, 41, 61, 81,
A1, C1, E1.

3 The Carry Flag is set if the Destination Operand is less than the Source Operand.
Otherwise the Carry Flag is cleared.

4 The Carry Flag is set if the BCD result in the Accumulator is greater than decimal
99.

5 The Overflow Flag is set if the B Register contains zero (flags a divide by zero
operation). Otherwise the Overflow Flag is cleared.

4 - 10

6 If any of the condition code flags are specified as the operand of this instruction,
they will be reset by the instruction if they were originally set.

7 The high byte of the 16-bit product is placed in the B Register, the low byte in
Accumulator.

4.4. References

1. Intel Corp., Microcontroller Handbook, 1984.

5 - 1

CHAPTER 5

8051 CROSS ASSEMBLER DIRECTIVES

5.1. Introduction

The 8051 Cross Assembler Directives are used to define symbols, reserve memory
space, store values in program memory, select various memory spaces, set the current
segment's location counter and identify the end of the source file.

Only one directive per line is allowed, however comments may be included. The remaining
part of this chapter details the function of each directive.

5.2. Symbol Definition Directives

EQU Directive

The EQUate directive is used to assign a value to a symbol. It can also be used to specify
user defined names for the implicit operand symbols predefined for the Accumulator (i.e.,
A) and the eight General Purpose Registers (i.e., R0 thru R7).

The format for the EQU directive is: symbol, followed by one or more spaces or tabs,
followed by EQU, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, previously defined symbol (no forward references allowed) or one of
the allowed implicit operand symbols (e.g., A, R0, R1, R2, R3, R4, R5, R6, R7), followed
by an optional comment.

Below are examples of using the EQU Directive:

TEN EQU 10 ;Symbol equated to a number
COUNTER EQU R7 ;User defined symbol for the implicit
 ;operand symbol R7. COUNTER can now
 ;be used wherever it is legal to use
 ;R7. For example the instruction
 ;INC R7 could now be written INC COUNTER.
ALSO_TEN EQU TEN ;Symbol equated to a previously defined
 ;symbol.
FIVE EQU TEN/2 ;Symbol equated to an arithmetic exp.
A_REG EQU A ;User defined symbol for the implicit
 ;operand symbol A.
ASCII_D EQU 'D' ;Symbol equated to an ASCII literal

5 - 2

SET Directive

Similar to the EQU directive, the SET directive is used to assign a value or implicit
operand to a user defined symbol. The difference however, is that with the EQU directive,
a symbol can only be defined once. Any attempt to define the symbol again will cause the
Cross Assembler to flag it as an error. On the other hand, with the SET directive, symbols
are redefineable. There is no limit to the number of times a symbol can be redefined with
the SET directive.

The format for the SET directive is: symbol, followed by one or more spaces or tabs,
followed by SET, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, previously defined symbol (no forward references allowed) or one of
the allowed implicit operand symbols (e.g., A, R0, R1, R2, R3, R4, R5, R6, R7), followed
by an optional comment.

Below are examples of using the SET Directive:

POINTER SET R0 ;Symbol equated to register 0
POINTER SET R1 ;POINTER redefined to register 1

COUNTER SET 1 ;Symbol initialized to 1
COUNTER SET COUNTER+1 ;An incrementing symbol

BIT Directive

The BIT Directive assigns an internal bit memory direct address to the symbol. If the
numeric value of the address is between 0 and 127 decimal, it is a bit address mapped in
the Internal Memory Space. If the numeric value of the address is between 128 and 255, it
is an address of a bit located in one of the Special Function Registers. Addresses greater
than 255 are illegal and will be flagged as an error.

The format for the BIT Directive is: symbol, followed by one or more spaces or tabs,
followed by BIT, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously defined symbol (no forward references allowed), followed by an
optional comment.

Below are examples of using the BIT Directive:

CF BIT 0D7H ;The single bit Carry Flag in PSW
OFF_FLAG BIT 6 ;Memory address of single bit flag
ON_FLAG BIT OFF_FLAG+1 ;Next bit is another flag

5 - 3

CODE Directive

The CODE Directive assigns an address located in the Program Memory Space to the
symbol. The numeric value of the address cannot exceed 65535.

The format for the CODE Directive is: symbol, followed by one or more spaces or tabs,
followed by CODE, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the CODE Directive:

RESET CODE 0
EXTI0 CODE RESET + (1024/16)

DATA Directive

The DATA Directive assigns a directly addressable internal memory address to the
symbol. If the numeric value of the address is between 0 and 127 decimal, it is an address
of an Internal Data Memory location. If the numeric value of the address is between 128
and 255, it is an address of a Special Function Register. Addresses greater than 255 are
illegal and will be flagged as an error.

The format for the DATA Directive is: symbol, followed by one or more spaces or tabs,
followed by DATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the DATA Directive:

PSW DATA 0D0H ;Defining the Program Status address
BUFFER DATA 32 ;Internal Data Memory address
FREE_SPAC DATA BUFFER+16 ;Arithmetic expression.

IDATA Directive

The IDATA Directive assigns an indirectly addressable internal data memory address to
the symbol. The numeric value of the address can be between 0 and 255 decimal.
Addresses greater than 255 are illegal and will be flagged as an error.

The format for the IDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by IDATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

5 - 4

Below are examples of using the IDATA Directive:

TOKEN IDATA 60
BYTE_CNT IDATA TOKEN + 1
ADDR IDATA TOKEN + 2

XDATA Directive

The XDATA Directive assigns an address located in the External Data Memory Space to
the symbol. The numeric value of the address cannot exceed 65535.

The format for the XDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by XDATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the XDATA Directive:

USER_BASE XDATA 2048
HOST_BASE XDATA USER_BASE + 1000H

5.3. Segment Selection Directives

There are five Segment Selection Directives: CSEG, BSEG, DSEG, ISEG, XSEG, one for
each of the five memory spaces in the 8051 architecture. The CSEG Directive is used to
select the Program Memory Space. The BSEG Directive is used to select the Bit Memory
Space. The DSEG Directive is used to select the directly addressable Internal Data
Memory Space. The ISEG is used to select the indirectly addressable Internal Data
Memory Space. The XSEG is used to select the External Data Memory Space.

Each segment has its own location counter that is reset to zero during the Cross
Assembler program initialization. The contents of the location counter can be overridden
by using the optional AT after selecting the segment.

The Program Memory Space, or CSEG, is the default segment and is selected when the
Cross Assembler is run.

The format of the Segment Selection Directives are: zero or more spaces or tabs, followed
by the Segment Selection Directive, followed by one or more spaces or tabs, followed by
the optional segment location counter override AT command and value, followed by an
optional comment.

5 - 5

The value of the AT command can be a number, arithmetic expression or previously
defined symbol (forward references are not allowed). Care should be taken to ensure that
the location counter does not advance beyond the limit of the selected segment.

Below are examples of the Segment Selection Directives:

DSEG ;Select direct data segment using
 ;current location counter value.
BSEG AT 32 ;Select bit data segment forcing
 ;location counter to 32 decimal.
XSEG AT (USER_BASE * 5) MOD 16 ;Arithmetic expressions can be
 ;used to specify location.

5.4. Memory Reservation and Storage Directives

DS Directive

The DS Directive is used to reserve space in the currently selected segment in byte units.
It can only be used when ISEG, DSEG or XSEG are the currently active segments. The
location counter of the segment is advanced by the value of the directive. Care should be
taken to ensure that the location counter does not advance beyond the limit of the segment.

The format for the DS Directive is: optional label, followed by one or more spaces or tabs,
followed by DS, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously defined symbol (no forward references allowed), followed by an
optional comment.

Below is an example of using the DS Directive in the internal Data Segment. If, for
example, the Data Segment location counter contained 48 decimal before the example
below, it would contain 104 decimal after processing the example.

 DSEG ;Select the data segment
 DS 32 ;Label is optional
SP_BUFFER: DS 16 ;Reserve a buffer for the serial port
IO_BUFFER: DS 8 ;Reserve a buffer for the I/O

DBIT Directive

The DBIT Directive is used to reserve bits within the BIT segment. It can only be used
when BSEG is the active segment. The location counter of the segment is advanced by the
value of the directive. Care should be taken to ensure that the location counter does not
advance beyond the limit of the segment.

The format for the DBIT Directive is: optional label, followed by one or more spaces or
tabs, followed by DBIT, followed by one or more spaces or tabs, followed by a number,

5 - 6

arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below is an example of using the DBIT Directive:

 BSEG ;Select the bit segment
 DBIT 16 ;Label is optional
IO_MAP: DBIT 32 ;Reserve a bit buffer for I/O

DB Directive

The DB Directive is used to store byte constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

The format for the DB Directive is: optional label, followed by one or more spaces or tabs,
followed by DB, followed by one or more spaces or tabs, followed by the byte constants
that are separated by commas, followed by an optional comment.

The byte constants can be numbers, arithmetic expressions, symbol values or ASCII
literals. ASCII literals have to be delimited by apostrophes ('), but they can be strung
together up to the length of the line.

Below are examples of using the DB Directive. If an optional label is used, its value will
point to the first byte constant listed.

COPYRGHT_MSG:
 DB '(c) Copyright, 1984' ;ASCII Literal
RUNTIME_CONSTANTS:
 DB 127,13,54,0,99 ;Table of constants
 DB 17,32,239,163,49 ;Label is optional
MIXED: DB 2*8,'MPG',2*16,'abc' ;Can mix literals & no.

DW Directive

The DW Directive is used to store word constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

The format for the DW Directive is: optional label, followed by one or more spaces or tabs,
followed by DW, followed by one or more spaces or tabs, followed by the word constants
that are separated by commas, followed by an optional comment.

The word constants can be numbers, arithmetic expressions, symbol values or ASCII
literals. ASCII literals must be delimited by apostrophes ('), but unlike the DB Directive,
only a maximum of two ASCII characters can be strung together. The first character is

5 - 7

placed in the high byte of the word and the second character is placed in the low byte. If
only one character is enclosed by the apostrophes, a zero will be placed in the high byte of
the word.

Below are examples of using the DW Directive. If an optional label is used, its value will
point to the high byte of the first word constant listed.

JUMP_TABLE: DW RESET,START,END ;Table of addresses
 DW TEST,TRUE,FALSE ;Optional label
RADIX: DW 'H',1000H ;1st byte contains 0
 ;2nd byte contains 48H (H)
 ;3rd byte contains 10H
 ;4th byte contains 0

5.5. Miscellaneous Directives

ORG Directive

The ORG Directive is used to specify a value for the currently active segment's location
counter. It cannot be used to select segments like the directives above. It can only be
used within a segment when the location counter needs to be changed. Care should be
taken to ensure that the location counter does not advance beyond the limit of the selected
segment.

The format of the ORG Directive is: zero or more spaces or tabs, followed by ORG,
followed by one or more spaces or tabs, followed by a number, arithmetic expression, or
previously defined symbol (no forward references are allowed), followed by an optional
comment.

Below are examples of the ORG directive.

 ORG 1000H ;Location counter set at 4096 decimal
 ORG RESET ;Previously defined symbol
 ORG BASE + MODULE_NO ;Arithmetic expression

USING DIRECTIVE

The USING Directive is used to specify which of the four General Purpose Register banks
is used in the code that follows the directive. It allows the use of the predefined register
symbols AR0 thru AR7 instead of the register's direct addresses. It should be noted that
the actual register bank switching must still be done in the code. This directive simplifies
the direct addressing of a specified register bank.

5 - 8

The format of the USING Directive is: zero or more spaces or tabs, followed by USING,
followed by one or more spaces or tabs, followed by a number, arithmetic expression, or
previously defined symbol (no forward references are allowed), followed by an optional
comment.

The number, arithmetic expression, or previously defined symbol must result in a number
between 0 and 3 in order to specify one of the four register banks in the 8051.

The following table maps the specified value in the USING directive with the direct
addresses of the predefined symbols.

Predefined
Symbol

USING Value
0 1 2 3

AR0 0 8 16 24
AR1 1 9 17 25
AR2 2 10 18 26
AR3 3 11 19 27
AR4 4 12 20 28
AR5 5 13 21 29
AR6 6 14 22 30
AR7 7 15 23 31

Below are examples of the USING Directive:

 USING 0 ;Select addresses for Bank 0
 USING 1+1+1 ;Arithmetic expressions

END Directive

The END Directive is used to signal the end of the source program to the Cross
Assembler. Every source program must have one and only one END Directive. A missing
END Directive, as well as text beyond the occurrence of the END Directive are not allowed
and will be flagged as errors.

The format of the END Directive is: zero or more spaces or tabs, followed by END,
followed by an optional comment. All text must appear in the source program before the
occurrence of the END Directive.

Below is an example of the END Directive:

 END ;This is the End

5 - 9

5.6. Conditional Assembly Directives

IF, ELSE and ENDIF Directive

The IF, ELSE and ENDIF directives are used to define conditional assembly blocks. A
conditional assembly block begins with an IF statement and must end with the ENDIF
directive. In between the IF statement and ENDIF directive can be any number of
assembly language statements, including directives, controls, instructions, the ELSE
directive and nested IF-ENDIF conditional assembly blocks.

The IF statement starts with the keyword IF, followed by one or more spaces or tabs,
followed by a number, arithmetic expression, or previously defined symbol (no forward
references are allowed), followed by an optional comment. The number, arithmetic
expression or symbol is evaluated and if found to be TRUE (non-zero), the assembly
language statements are translated up to the next ELSE or ENDIF directives. If the IF
statement was evaluated FALSE (zero), the assembly language statements are
considered null up to the next ELSE or ENDIF directives.

If an optional ELSE appears in the conditional assembly block, the assembly language
statements following are handled oppositely from the assembly language statements
following the IF statement. In other words, if the IF statement was evaluated TRUE, the
statements following it are translated, while the statements following the ELSE will be
handled as if they were null. On the other hand, if the IF statement was evaluated FALSE,
only the assembly language statements following the ELSE directive would be translated.

IF-ELSE-ENDIF conditional assembly blocks can be nested up to 255 levels deep. The
following are some examples of conditional assembly blocks. This first conditional
assembly block simply checks the symbol DEBUG. If DEBUG is non-zero, the MOV and
CALL instructions will be translated by the Cross Assembler.

IF (DEBUG)
 MOV A,#25
 CALL OUTPUT
ENDIF

The next example used the optional ELSE directive. If SMALL_MODEL is zero, only the
statements following the ELSE directive will be translated.

IF (SMALL_MODEL)
 MOV R0,#BUFFER
 MOV A,@R0
ELSE
 MOV R0,#EXT_BUFFER
 MOVX A,@R0
ENDIF

5 - 10

The last example shows nested conditional assembly blocks. Conditional assembly blocks
can be nested up to 255 levels deep. Every level of nesting must have balanced IF-ENDIF
statements.

 _
IF (VERSION > 10) \
 CALL DOUBLE_PRECISION |
 CALL UPDATE_STATUS _ |
 IF (DEBUG) \ |
 CALL DUMP_REGISTERS > Nested |
 ENDIF _/ Block |
ELSE > Outer Block
 CALL SINGLE_PRECISION |
 CALL UPDATE_STATUS _ |
 IF (DEBUG) \ |
 CALL DUMP_REGISTERS > Nested |
 ENDIF _/ Block |
ENDIF _/

6 - 1

CHAPTER 6

8051 CROSS ASSEMBLER CONTROLS

6.1. Introduction

Assembler controls are used to control where the Cross Assembler gets its input source
file, where it stores the object file, how it formats and where it outputs the listing.

All Assembler controls are prefaced with a dollar sign, ($). No spaces or tabs are allowed
between the dollar sign and the body of the control. Also, only one control per line is
permitted. Comments are allowed on the same line as an Assembler control.

There are two types of controls, Primary controls and General controls. Primary controls
can be invoked only once per assembly. If an attempt is made to change a previously
invoked primary control, the attempt is ignored. For example, if $NOPRINT is put on line 1
of the source file and $PRINT is put on line 2, the $PRINT control will be ignored and the
listing will not be output. General controls can be invoked any number of times in a source
program.

There are two legal forms for each Assembler control, the full form and the abbreviated
form. The two forms can be used interchangeable in the source program.

Below is a description of each Assembler control. Assembler controls with common
functionality are grouped together.

6.2. Assembler Control Descriptions

$DATE(date)
Places the ASCII string enclosed by parenthesis in the date field of the page header. The
ASCII string can be from 0 to 9 characters long.

CONTROL: $DATE(date)
ABBREV: $DA(date)
TYPE: Primary
DEFAULT: No date in page header
EXAMPLES: $DATE(1-JUL-84)

$DA(7/22/84)

6 - 2

$DEBUG(file)
$NODEBUG
These controls determine whether or not a MetaLink Absolute Object Module format file is
created. The MetaLink Absolute Object Module format file is used in conjunction with
MetaLink's MetaICE series of in-circuit-emulators. Among other advantages, it provides
powerful symbolic debug capability in the emulator debug environment. $NODEBUG
specifies that a MetaLink Absolute Object Module file will not be created. $DEBUG
specifies that a MetaLink Absolute Object Module file will be created. The $DEBUG
control allows any legal file name to be specified as the MetaLink Absolute Object Module
filename. If no filename is specified, a default name is used. The default name used for
the file is the source file name root with a .DBG extension. If the $DEBUG control is used,
both a MetaLink Absolute Object Module file and a standard Intel Hexadecimal format
object file can be generated at the same time. Refer to the $OBJECT control description
later in this chapter for information on controlling the Hexadecimal format object file output.

CONTROL: $DEBUG(file)
$NODEBUG

ABBREV: $DB(file)
$NODB

DEFAULT: $NODEBUG
TYPE: Primary
EXAMPLES: $DB(A:NEWNAME.ICE)

$DEBUG
$NOOBJECT

$EJECT
Places a form feed (ASCII 0CH) in the listing output. The $NOPAGING control will override
this control.

CONTROL: $EJECT
ABBREV: $EJ
DEFAULT: No form feeds in listing output
TYPE: General
EXAMPLES: $EJECT

$EJ

$INCLUDE(file)
Inserts a file in source program as part of the input source program. The file field in this
control can be any legal file designator. No extension is assumed, so the whole file name
must be specified. Any number of files can be included in a source program. Includes can
be nested up to 8 level deep. It is important to note that this control inserts files, it does not
chain or concatenate files.

CONTROL: $INCLUDE(file)
ABBREV: $IC(file)
DEFAULT: No file included in source program

6 - 3

TYPE: General
EXAMPLES: $INCLUDE(B:COMMON.EQU

$IC(TABLES.ASM) ;Uses default drive

$LIST
$NOLIST
These controls determine whether or not the source program listing is output or not. $LIST
will allow the source program listing to be output. $NOLIST stops the source program
listing from being output. The $NOPRINT control overrides the $LIST control.

CONTROL: $LIST
$NOLIST

ABBREV: $LI
$NOLI

DEFAULT: $LIST
TYPE: General
EXAMPLES: $NOLIST ;This will cause the included
$INCLUDE(COMMON.TBL) ;file not to be listed

$LI ;Listing continues

$MOD51
$MOD52
$MOD44
$MOD515
$MOD512
$MOD517
$MOD152
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521
$MOD552
$MOD652
$MOD851
$NOMOD
Recognizes predefined special function register symbols in the source program. This
saves the user from having to define all the registers in the source program. Appendix B
lists the symbols that are defined by these controls. $NOMOD disables the recognizing
function. These controls access a files of the same name that are included with the
MetaLink 8051 CROSS ASSEMBLER distribution diskette. When a $MOD control is
used in a source program, it is important that the $MOD file be available to the Cross

6 - 4

Assembler. The Cross Assembler first looks for the $MOD file on the default drive, if it isn't
found there, the Cross Assembler looks for it on the A: drive. The components supported
by each switch are:

$MOD51: 8051, 8751, 8031, 80C51, 80C31, 87C51, 9761, 8053
$MOD52: 8052, 8032, 8752
$MOD44: 8044, 8344, 8744
$MOD515: 80515, 80535, 80C515, 80C535
$MOD512: 80512, 80532
$MOD517: 80C517, 80C537
$MOD152: 80C152, 83C152, 80C157
$MOD451: 80C451. 83C451, 87C451
$MOD452: 80C452, 83C452, 87C452
$MOD752: 83C752, 87C752
$MOD751: 83C751, 87C751
$MOD154: 83C514, 80C154, 85C154
$MOD252: 80C252, 83C252, 87C252, 80C51FA, 83C51FA, 87C51FA,

83C51FB, 87C51FB
$MOD521: 80C521, 80C321, 87C521, 80C541, 87C541
$MOD552: 80C552, 83C552, 87C552
$MOD652: 80C652, 83C652
$MOD851: 80C851, 83C851
CONTROL: $MOD51

$MOD52
$MOD44
$MOD152
$MOD515
$MOD512
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521
$MOD552
$MOD652
$MOD517
$MOD851
$NOMOD

ABBREV:
DEFAULT: $NOMOD
TYPE: Primary
EXAMPLES: $MOD51

$MOD52

6 - 5

$MOD44
$MOD515
$MOD512
$MOD152
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521
$MOD552
$MOD652
$MOD517
$MOD851
$NOMOD

$OBJECT(file)
$NOOBJECT
These controls determine whether or not a standard Intel Hexadecimal format object file is
created. $NOOBJECT specifies that an object file will not be created. $OBJECT
specifies that an object file will be created. If other than the default name is to be used for
the object file, the $OBJECT control allows any legal file name to be specified as the
object filename. The default name used for the object file is the source file name root with
a .HEX extension.

CONTROL: $OBJECT(file)
$NOOBJECT

ABBREV: $OJ(file)
$NOOJ

DEFAULT: $OBJECT(source.HEX)
TYPE: Primary
EXAMPLES: $OJ(A:NEWNAME.OBJ)

$NOOBJECT

$PAGING
$NOPAGING
These controls specify whether or not the output listing will be broken into pages or will be
output as one continuous listing. When the $NOPAGING control is used, the $EJECT and
$PAGELENGTH controls are ignored. With the $PAGING control, a form feed and header
line is inserted into the output listing whenever an $EJECT control is met, or whenever the
number of lines output on the current page exceeds the value specified by the
$PAGELENGTH control. The header line contains source file name, title (if $TITLE control
was used), date (if $DATE control was used) and page number.

6 - 6

CONTROL: $PAGING
$NOPAGING

ABBREV: $PI
$NOPI

DEFAULT: $PAGING
TYPE: Primary
EXAMPLES: $PAGING

$NOPI

$PAGELENGTH(n)
Sets the maximum number of lines, (n), on a page of the output listing. If the maximum is
exceeded, a form feed and page header is inserted in the output listing. This control
allows the number of lines per page to be set anywhere between 10 and 255. If the
number of lines specified is less than 10, pagelength will be set to 10. If the number of
lines specified is greater than 255, pagelength will be set to 255.

The $NOPAGING control will override this control.
CONTROL: $PAGELENGTH(n)
ABBREV: $PL(n)
DEFAULT: $PAGELENGTH(60)
TYPE: Primary
EXAMPLES: $PAGELENGTH(48)

$PL(58)

$PAGEWIDTH(n)
Sets the maximum number of characters, (n), on a line of the output listing. This control
allows the number of characters per line to be set anywhere between 72 and 132. If the
number specified is less than 72, the pagewidth is set at 72. If the number specified is
greater than 132, the pagewidth is set at 132. If the pagewidth is specified between 72
and 100 and the line being output exceeds the pagewidth specification, the line is
truncated at the specified pagewidth and a carriage return/line feed pair is inserted in the
listing. If the pagewidth is specified to be greater than 100 and the line being output
exceed the pagewidth specification, a carriage return/line feed pair is inserted at the
specified pagewidth and the line will continue to be listed on the next line beginning at
column 80.

CONTROL: $PAGEWIDTH(n)
ABBREV: $PW(n)
DEFAULT $PAGEWIDTH(72)
TYPE: Primary
EXAMPLES: $PAGEWIDTH(132)

$PW(80)

6 - 7

$PRINT(file)
$NOPRINT
These controls determine whether or not a listing file is created. $NOPRINT specifies that
a listing file will not be created. $PRINT specifies that an listing file will be created. If other
than the default name is to be used for the listing file, the $PRINT control allows any legal
file name to be specified as the listing filename. The default name used for the listing file is
the source file name root with a .LST extension.

CONTROL: $PRINT(file)
$NOPRINT

ABBREV: $PR
$NOPR

DEFAULT: $PRINT(source.LST)
TYPE: Primary
EXAMPLES: $PRINT(A:CONTROL.OUT)

$NOPR

$SYMBOLS
$NOSYMBOLS
Selects whether or not the symbol table is appended to the listing output. $SYMBOLS
causes the symbol table to be sorted alphabetically by symbol, formatted and output to the
listing file. Along with the symbol name, its value and type are output. Values are output in
hexadecimal. Types include NUMB (number), ADDR (address), REG (register symbol)
and ACC (accumulator symbol). If a symbol was of type ADDR, it segment is also output
as either C (code), D (data) or X (external). Other information listed with the symbols is
NOT USED (symbol defined but never referenced), UNDEFINED (symbol referenced but
never defined) and REDEFINEABLE (symbol defined using the SET directive). The type
and value listed for a REDEFINABLE symbol is that of its last definition in the source
program. $NOSYMBOLS does not output the symbol table.

CONTROL: $SYMBOLS
$NOSYMBOLS

ABBREV: $SB
$NOSB

DEFAULT: $SYMBOLS
TYPE: Primary
EXAMPLES: $SB

$NOSYMBOLS

$TITLE(string)
Places the ASCII string enclosed by the parenthesis in the title field of the page header.
The ASCII string can be from 0 to 64 characters long. If the string is greater than 64
characters or if the width of the page will not support such a long title, the title will be
truncated. If parentheses are part of the string, they must be balanced.

6 - 8

CONTROL: $TITLE(string)
ABBREV: $TT(string)
DEFAULT: No title in page header
TYPE: Primary
EXAMPLES: $TITLE(SAMPLE PROGRAM V1.2)

$TT(METALINK (TM) CROSS ASSEMBLER)

7 - 1

CHAPTER 7

8051 CROSS ASSEMBLER MACRO PROCESSOR

7.1. Introduction

Macros are useful for code that is used repetitively throughout the program. It saves the
programmer the time and tedium of having to specify the code every time it is used. The
code is written only once in the macro definition and it can be used anywhere in the source
program any number of times by simply using the macro name.

Sometimes there is confusion between macros and subroutines. Subroutines are common
routines that are written once by the programmer and then accessed by CALLing them.
Subroutines are usually used for longer and more complex routines where the call/return
overhead can be tolerated. Macros are commonly used for simpler routines or where the
speed of in-line code is required.

7.2. Macro Definition

Before a macro can be used, it first must be defined. The macro definition specifies a
template that is inserted into the source program whenever the macro name is
encountered. Macro definitions can not be nested, but once a macro is defined, it can be
used in other macro definitions. Macros used this way can be nested up to nine levels
deep.

The macro definition has three parts to it: 1) the macro header which specifies the macro
name and its parameter list, 2) the macro body which is the part that is actually inserted
into the source program, and 3) the macro terminator.

The macro header has the following form:

name MACRO <parameter list>

The name field contains a unique symbol that it used to identify the macro. Whenever that
symbol is encountered in the source program, the Cross Assembler will automatically
insert the macro body in the source program at that point. The name must be a unique
symbol that follows all the rules of symbol formation as outlined in Chapter 2.

The MACRO field of the macro header contains the keyword MACRO. This is used to
notify the Cross Assembler that this is the beginning of a macro definition.

7 - 2

The <parameter list> field of the macro header lists anywhere from zero to 16 parameters
that are used in the macro body and are defined at assembly time. The symbols used in
the parameter list are only used by the Cross Assembler during the storing of the macro
definition. As a result, while symbols used in the parameter list must be unique symbols
that follow all the the rules of symbol formation as outlined in Chapter 2, they can be
reissued in the parameter list of another macro definition without conflict. Parameter list
items are separated from one another by a comma. The following are examples of macro
definition headers:

MULT_BY_16 MACRO (no parameters)
DIRECT_ADD MACRO DESTINATION,SOURCE (two parameters)

The macro body contains the template that will replace the macro name in the source
program. The macro body can contain instructions, directives, conditional assembly
statements or controls. As a matter of fact, the macro body can contain any legal Cross
Assembler construct as defined in Chapters 2, 4, 5 and 6.

There are two macro definition terminators: ENDM and EXITM. Every macro definition
must have an ENDM at the end of its definition to notify the Cross Assembler that the
macro definition is complete. The EXITM terminator is an alternative ending of the macro
that is useful with conditional assembly statements. When a EXITM is encountered in a
program, all remaining statements (to the ENDM) are ignored.

The following is an example of a macro definition that multiplies the Accumulator by 16:

MULT_BY_16 MACRO
 RL A ;* 2
 RL A ;* 4
 RL A ;* 8
 RL A ;* 16
 ENDM

The following is an example of a macro that adds two numbers together. This could be
used by the programmer to do direct memory to memory adds of external variables
(create a virtual instruction).

DIRECT_ADDX MACRO DESTINATION,SOURCE (two parameters)
 MOV R0,#SOURCE
 MOVX A,@R0
 MOV R1,A
 MOV R0,#DESTINATION
 MOVX A,@R0
 ADD A,R1
 MOVX @R0,A
ENDM

7 - 3

A final macro definition example shows the use of the EXITM macro terminator. If CMOS
is non-zero, the MOV and only the MOV instruction will be translated by the Cross
Assembler.

IDLE MACRO
 IF (CMOS)
 MOV PCON,#IDL
 EXITM
 ENDIF
 JMP $
ENDM

7.3. Special Macro Operators

There are four special macro operators that are defined below:

% when the PERCENT sign prefaces a symbol in the parameter list, the
symbol's value is passed to the macro's body instead of the symbol itself.

! when the EXCLAMATION POINT precedes a character, that character is
handled as a literal and is passed to the macro body with the
EXCLAMATION POINT removed. This is useful when it is necessary to
pass a delimiter to the macro body. For example, in the following parameter
list, the second parameter passed to the macro body would be a COMMA (,
):

 GENERATE_INST 75,!,,STK_VALUE

& when the AMPERSAND is used in the macro body, the symbols on both
sides of it are concatenated together and the AMPERSAND is removed.

;; when double SEMI-COLONS are used in a macro definition, the comment
preceded by the double SEMI_COLONS will not be saved and thus will not
appear in the listing whenever the macro is invoked. Using the double
SEMI-COLONS lowers the memory requirement in storing the macro
definitions and should be used whenever possible.

Examples of using the above special macro operators follow in the "Using Macros"
section.

7.4. Using Macros

This section section discusses several situations that arise using macros and how to
handle them. In general the discussion uses examples to get the point across. First the

7 - 4

macro definition is listed, then the source line program that will invoke the macro and finally
how the macro was expanded by the Cross Assembler.

7.4.1. NESTING MACROS
The following shows a macro nested to a depth of three. Remember, definitions cannot be
nested. Macros must be defined before they are used in other macro definitions.

Two things should be pointed out from the above example. First, the order of the
parameter list is important. You must maintain the the order of parameters from the macro
definition if the Cross Assembler is to translate the macro correctly.

Secondly, in order to pass parameters to nested macros, simply use the same parameter
symbol in the parameter list of the definition. For example, the parameter DESTINATION
was passed properly to the nested macros ADD_EXT_BYTES and GET_EXT_BYTE.
This occurred because in the macro definition of ADD_DIRECT_BYTES, the parameter
DESTINATION was specified in the parameter lists of both ADD_EXT_BYTES and
GET_EXT_BYTE.

7 - 5

;MACRO DEFINITIONS

GET_EXT_BYTE MACRO EXT_ADDR
 MOV R0,#EXT_ADDR
 MOVX A,@R0
ENDM

ADD_EXT_BYTES MACRO EXT_DEST,EXT_SRC
 GET_EXT_BYTE EXT_DEST
 MOV R1,A
 GET_EXT_BYTE EXT_SRC
 ADD A,R1
 ENDM

ADD_DIRECT_BYTES MACRO DESTINATION,SOURCE
 IF (SMALL_MODEL)
 MOV A,SOURCE
 ADD A,DESTINATION
 MOV DESTINATION
 ELSE
 ADD_EXT_BYTES DESTINATION,SOURCE
 MOVX @R0,A
 ENDIF
ENDM

;USAGE IN PROGRAM

ADD_DIRECT_BYTES 127,128

;TRANSLATED MACRO

 30 +1 ADD_DIRECT_BYTES 127,128
 31 +1 IF (SMALL_MODEL)
 32 +1 MOV A,128
 33 +1 ADD A,127
 34 +1 MOV 127
 35 +1 ELSE
 36 +2 ADD_EXT_BYTES 127,128
 37 +3 GET_EXT_BYTE 127
0100 787F 38 +3 MOV R0,#127
0102 E2 39 +3 MOVX A,@R0
0103 F9 40 +2 MOV R1,A
 41 +3 GET_EXT_BYTE 128
0104 7880 42 +3 MOV R0,#128
0106 E2 43 +3 MOVX A,@R0
0107 29 44 +2 ADD A,R1
0108 F2 45 +1 MOVX @R0,A
 46 +1 ENDIF
 48

7 - 6

7.4.2. LABELS IN MACROS

You have two choices for specifying labels in a macro body. A label can either be passed
to the body as a parameter or it can be generated within the body. The following example
shows both ways.

;MACRO DEFINITION

MULTIPLE_SHIFT MACRO LABEL,LABEL_SUFFIX,COUNTER,N
 COUNTER SET COUNTER+1 ;INCREMENT SUFFIX FOR NEXT
USAGE

LABEL: MOV R0,#N
SHIFT&LABEL_SUFFIX: RL A
 DJNZ R0,SHIFT&LABEL_SUFFIX
ENDM

;USAGE IN PROGRAM

MULTIPLE_SHIFT LOOP_SHIFT,%COUNT,COUNT,4

;TRANSLATED MACRO

 15 +1 MULTIPLE_SHIFT LOOP_SHIFT,%COUNT,COUNT,4
 0006 16 +1 COUNT SET COUNT+1
 17 +1
0100 7804 18 +1 LOOP_SHIFT: MOV R0,#4
0102 23 19 +1 SHIFT5: RL A
0103 D8FD 20 +1 DJNZ R0,SHIFT5
 22

Points to note in the above example: 1) the double semi-colon caused the comment not to
be listed in the translated macro; 2) the percent sign caused the value of COUNT (in this
case the value 5) to be passed to the macro body instead of the symbol; and 3) the
ampersand allowed two symbols to be concatenated to form the label SHIFT5.

8 - 1

CHAPTER 8

8051 CROSS ASSEMBLER ERROR CODES

8.1. Introduction

When the Cross Assembler encounters an error in the source program, it will emit an error
message in the listing file. If the $NOPRINT control has been invoked, the error message
will be output to the screen.

There are basically two types of errors that are encountered by the Cross Assembler,
translation errors and I/O errors. I/O errors are usually fatal errors. However, whenever an
error is detected, the Cross Assembler makes every effort possible to continue with the
assembly.

If it is possible to recover from the error and continue assembling, the Cross Assembler
will report the error, use a default condition and continue on its way. However, when a fatal
error is encountered, it is impossible for the Cross Assembler to proceed. In this case, the
Cross Assembler reports the error and then aborts the assembly process.

Fatal I/O error messages are displayed on the screen and are of the form:

FATAL ERROR opening <filename>

 where <filename> would be replaced with the file designator initially entered or read from
the source program. The cause of this error is usually obvious, typically a typographical
error or the wrong drive specification.

Another fatal I/O error message is:

FATAL ERROR writing to <type> file

 where <type> would be replaced with either "listing" or "object". The cause of this error is
usually either a write protected disk or a full disk.

Translation error reports contain at least three lines. The first line is the source line in
which the error was detected, the second line is a pointer to the character, symbol,
expression or line that caused the error. The final line is the error message itself. There
may be more than one error message, depending on the number of errors in the source
line. An example of a source line with two errors in it follows:

8 - 2

0100 2323 26 START: MOV AB,@35
****--^---^
****ERROR #20: Illegal operand
****ERROR #20: Illegal operand

The errors are pointed out by the up-arrows (^). For every uparrow there will be an error
message. Errors are ordered left to right, so the first error message corresponds to the
left-most up-arrow and so on. The error message includes an error number and an
description of the error. The error number can be used as an index to the more detailed
error explanations that follow in this chapter.

After the Cross Assembler has completed its translation process, it will print an assembly
complete message:

ASSEMBLY COMPLETE, nn ERRORS FOUND

If it was an error free assembly, in place of the "nn" above the word "NO" will be output.
However, if errors were encountered during the assembly process, the "nn" will be
replaced with the number of errors that were found (up to a maximum of 50). In this case,
an error summary will follow in the listing file with all the errors that were reported during the
assembly. An error summary looks like the following:

ERROR SUMMARY:
Line #26, ERROR #20: Illegal operand
Line #26, ERROR #20: Illegal operand

The same error message that occurred after the source line appears again prefaced by
the source line number to aid in tracking down the error in the source listing.

8.2. Explanation of Error Messages

ERROR #1: Illegal character
This error occurs when the Cross Assembler encounters a character that is not part of its
legal character set. The Cross Assembler character set can be found in Appendix D.

ERROR #2: Undefined symbol
This error occurs when the Cross Assembler tries to use a symbol that hasn't been
defined. The two most common reasons for this error are typographical errors and
forward references.

ERROR #3: Duplicate symbol
This error occurs when a previously defined symbol or a reserved symbol is
attempted to be defined again. Refer to Appendix C for the reserved words. Also
inspect the symbol in the symbol table listing. If the symbol doesn't appear there,

8 - 3

you are using a reserved word. If the symbol does appear, its original definition will
be listed.

ERROR #4: Illegal digit for radix
A digit was encountered that is not part of the legal digits for the radix specified.
Chapter 2 lists the legal digits for each radix available. Often this error occurs
because a symbol was started with a number instead of a letter, question mark, or
underscore.

ERROR #5: Number too large
The number specified, or the returned value of the expression, exceeds 16-bit
precision. The largest value allowed is 65,535.

ERROR #6: Missing END directive
The source program must end with one and only one END directive. The END is
placed after all the assembly line statements.

ERROR #7: Illegal opcode/directive after label
The symbol after a label is not an opcode nor a directive that allows labels. The
only thing permitted on a line after a label is an instruction, the DS, DB or DW
directives, or a comment. If none of these are found, this error will be reported.

ERROR #8: Illegal assembly line
The assembly line doesn't begin with a symbol, label, instruction mnemonic, control,
directive, comment or null line. No attempt is made to translate such a line.

ERROR #9: Text beyond END directive
The END directive must be the last line of the source program. Any text beyond the
END line will cause this error. Any such text is ignore. Text here is defined as any
printable ASCII characters.

ERROR #10: Illegal or missing expression
A number, symbol or arithmetic expression was expected, but it was either found to
be missing or the Cross Assembler was unable to evaluate it properly.

ERROR #11: Illegal or missing expression operator
An arithmetic operator was expected but it is either missing or it is not one of the
legal operators specified in Chapter 2.

ERROR #12: Unbalanced parentheses
In evaluating an expression, the parentheses in the expression were found not to
balance.

8 - 4

ERROR #13: Illegal or missing expression value
In evaluating an expression, the Cross Assembler expected to find either a number
or a symbol, but it was either missing or illegal.

ERROR #14: Illegal literal expression
This error occurs when a null ASCII literal string is found. A null ASCII literal is
nothing more than two apostrophes together ('') and is illegal.

ERROR #15: Expression stack overflow
The expression stack has a depth of 32 values. The expression being evaluated
exceeds this depth. This is a very rare error. However, if you ever get it, divide the
expression into two or more expressions using the EQU directive.

ERROR #16: Division by zero
The expression being evaluated includes an attempt to divide by zero.

ERROR #17: Illegal bit designator
A bit designator address was specified in the source program and it points to an
illegal bit address. A bit designator contains a byte address, followed by a
PERIOD, followed by the bit index into the byte address (e.g., ACC.7) as discussed
in Chapter 2. This error can occur for one of two reasons. First, if the number or a
symbol that is used to specify the byte address part of the bit designator is not a
legal bit addressable address, ERROR #17 will occur. Second, if the bit index into
the byte address exceeds the number 7, again ERROR #17 will be output.

ERROR #18: Target address exceeds relative address range
A Program Counter relative jump instruction (e.g., SJMP, JZ, JNC, etc.) was
decoded with the target address of the jump exceeding the maximum possible
forward jump of 127 bytes or the maximum possible backward jump of 128 bytes.

ERROR #20: Illegal operand
The operand specified is not a legal operand for the instruction. Review the legal
operands allowed for the instruction.

ERROR #21: Illegal indirect register
R0 and R1 are the only primary legal indirect register. This error occurs when the
indirect addressing mode designator (@) is not followed by either R0, R1 or
symbols that were defined to be equivalent to either R0 or R1. This error can also
occur in the MOVC A,@A+DPTR, MOVC A,@A+PC, MOVX A,@DPTR, MOVX
@DPTR,A and the JMP @A+DPTR instructions if the operands after the indirect
addressing mode designator (@) aren't specified properly.

ERROR #22: Missing operand delimiter
A COMMA operand delimiter is missing from the operand fields of the instruction.

8 - 5

ERROR #23: Illegal or missing directive
This error occurs when the Cross Assembler cannot find a legal directive. The most
common cause of this error is due to leaving the COLON off a label. As a result, the
following opcode mnemonic is attempted to be decoded as a directive.

ERROR #24: Attempting to EQUate a previously SET symbol
Once a symbol is defined using the SET directive, it cannot be later redefined using
the EQU directive.

ERROR #25: Attempting to SET a previously EQUated symbol
Once a symbol is defined using the EQU directive, it cannot be redefined. If you
want the symbol to be redefineable, use the SET directive.

ERROR #26: Illegal SET/EQU expression
The expression following the SET or EQU directive is illegal. This typically occurs
when an attempt is made to define a symbol to be equivalent to an implicit register
other than A, R0, R1, R2, R3, R4, R5, R6 or R7.

ERROR #27: Illegal expression with forward reference
This error occurs when an expression contains a symbol that hasn't been defined
yet. Move the symbol definition earlier in the source file.

ERROR #28: Address exceeds segment range
The address specified exceeds 255 and you are in the DSEG, BSEG, or ISEG.

ERROR #29: Expecting an EOL or COMMENT
The Cross Assembler has completed processing a legal assembly language line
and expected the line to be terminated with either a COMMENT or a carriage
return/line feed pair.

ERROR #30: Illegal directive with current active segment
The specified directive is not legal in the active segment. This can happen by trying
to use the DBIT directive in other than the BSEG, or using the DS directive in the
BSEG.

ERROR #31: Only two character string allowed
This error occurs using the DW directive. The maximum ASCII literal allowed in a
DW specification is a two character string.

ERROR #32: Byte definition exceeds 255
This error occurs using the DB directive. The value specified in the DB
specification cannot fit into a byte.

ERROR #33: Premature end of string
An ASCII literal string was not terminated properly with an apostrophe.

8 - 6

ERROR #34: Illegal register bank number
This error occurs when the number specified with the USING directive exceed 3.
Legal register bank numbers are: 0, 1, 2, 3.

ERROR #35: Include file nesting exceeds 8
The maximum number of nested include files is eight. You will get this error if you
exceed this limit.

ERROR #36: Illegal or missing argument
This error occurs when the syntax of a Cross Assembler control requires an
argument and it was either incorrectly specified or is missing all together.

ERROR #37: Illegal control statement
The Cross Assembler does not recognize the specified control. The legal controls
are detailed in Chapter 6.

ERROR #38: Unable to open file
The Cross Assembler is unable to open the file as specified. This is a fatal error
which will abort the assembly process.

ERROR #39: Illegal file specification
The file specification is not a legal file designator. Refer to your DOS manual for a
description of legal file designators. This is a fatal error which will abort the
assembly process.

ERROR #40: Program synchronization error
This error occurs when the Cross Assembler is generating the object hex file and
finds that the code segment location counter is not advancing properly. There are
two cases where this can happen. First, if the source program uses ORG directives
and they are not placed in ascending order. Second, if a generic CALL or JMP is
made to a forward reference that is actually defined later in the program to be a
backward reference. For example, the following code sequence will cause this error
due to the second reason:

 BACK_REF: NOP
 CALL FORWARD_REF
 FORWARD_REF EQU BACK_REF

During the first pass, the generic CALL will be replaced with a 3-byte LCALL
instruction. During the second pass, the generic CALL will be replaced with a
2-byte ACALL instruction. To prevent this kind of problem, use the generic CALLs
and JMPs with labeled targets, not EQU or SET defined symbols.

ERROR #41: Insufficient memory
This error occurs when there isn't enough memory to hold all the symbols that have
been generated by the source program. If you have 96 Kbytes or more of RAM this

8 - 7

will be a very rare error. Only a massive source program or numerous large macros
could potentially cause this error. However, if this error does occur, your best bet is
to either buy more memory or to break up your program into smaller pieces and
share common symbols with a common $INCLUDE file.

ERROR #42: More errors detected, not listed
The internal error buffer can hold 50 errors. If more than 50 errors occur, only the
first 50 will be reported.

ERROR #43: ENDIF without IF
The terminator of a conditional assembly block (ENDIF) was recognized without
seeing a matching IF.

ERROR #44: Missing ENDIF
A conditional assembly block was begun with an IF statement, but no matching
ENDIF was detected.

ERROR #45: Illegal or missing macro name
The MACRO keyword was recognized, but the symbol that is supposed to precede
the MACRO keyword was missing, an illegal symbol or a duplicate symbol.

ERROR #46: Macro nesting too deep
Macros can be nested to a depth of 9 levels. Exceeding this limit will cause this
error.

ERROR #47: Number of parameters doesn't match definition
In attempting to use a macro, the number of parameters in the parameter list does
not equal the number of parameters specified in the macro definition. They must
match.

ERROR #48: Illegal parameter specification
This error typically occurs when a previously defined symbol is used in the
parameter list of the macro definition.

ERROR #49: Too many parameters
The maximum number of parameters in a macro parameter list is sixteen. This
error occurs when you exceed that limit.

ERROR #50: Line exceeds 255 characters
The maximum length of a source line is 255 characters. If a carriage return/line
feed pair is not detected in the first 256 characters of a line, this error is reported
and the line is truncated at 255 characters.

A - 1

APPENDIX A

SAMPLE PROGRAM AND LISTING

A.1. Source File

;
; 8-bit by 8-bit signed multiply--byte signed multiply
;
; This routine takes the signed byte in multiplicand and
; multiplies it by the signed byte in multiplier and places
; the signed 16-bit product in product_high and product_low.
;
; This routine assumes 2s complement representation of signed
; numbers. The maximum numbers possible are then -128 and
; +127. Multiplying the possible maximum numbers together
; easily fits into a 16-bit product, so no overflow test is
; done on the answer.
;
; Registers altered by routine: A, B, PSW.
;
;
; Primary controls
$MOD51
$TITLE(BYTE SIGNED MULTIPLY)
$DATE(JUL-30-84)
$PAGEWIDTH(132)
$OBJECT(B:BMULB.OBJ)
;
;
; Variable declarations
;
sign_flag BIT 0F0H ;sign of product
multiplier DATA 030H ;8-bit multiplier
multiplicand DATA 031H ;8-bit multiplicand
product_high DATA 032H ;high byte of 16-bit answer
product_low DATA 033H ;low byte of answer
;
;
;
 ORG 100H ;arbitrary start
; byte_signed_multiply:
 CLR sign_flag ;reset sign
 MOV A,multiplier ;put multiplier in accumulator
 JNB ACC.7,positive ;test sign bit of multiplier
 CPL A ;negative--complement and
 INC A ;add 1 to convert to positive
 SETB sign_flag ;and set sign flag

A - 2

;
positive: MOV B,multiplicand ;put multiplicand in B register
 JNB B.7,multiply ;test sign bit of multiplicand
 XRL B,#0FFh ;negative--complement and
 INC B ;add 1 to convert to positive
 CPL sign_flag ;complement sign flag
;
multiply: MUL AB ;do unsigned multiplication
;
sign_test: JNB sign_flag,byte_signed_exit ;if positive,done
 XRL B,#0FFh ;else have to complement both
 CPL A ;bytes of the product and inc
 ADD A,#1 ;add here because inc doesn't
 JNC byte_signed_exit ;set the carry flag
 INC B ;if add overflowed A, inc the
 ;high byte
byte_signed_exit:
 MOV product_high,B ;save the answer
 MOV product_low,A
;
 RET ;and return
END

A - 3

A.2. Source File Listing

 BMULB BYTE SIGNED MULTIPLY JUL-30-84 PAGE 1

 1 ;
 2 ; 8-bit by 8-bit signed multiply--byte signed multiply
 3 ;
 4 ; This routine takes the signed byte in multiplicand and
 5 ; multiplies it by the signed byte in multiplier and places
 6 ; the signed 16-bit product in product_high and product_low.
 7 ;
 8 ; This routine assumes 2s complement representation of signed
 9 ; numbers. The maximum numbers possible is then -128 and +127.
 10 ; Multiplying the possible maximum numbers together easily fits
 11 ; in a 16-bit product, so no overflow test is done on the answer.
 12 ;
 13 ; Registers altered by routine: A, B, PSW.
 14 ;
 15 ;
 16 ; Primary controls
 17 $MOD51
 18 $TITLE(BYTE SIGNED MULTIPLY)
 19 $DATE(JUL-30-84)
 20 $PAGEWIDTH(132)
 21 $OBJECT(B:BMULB.OBJ)
 22 ;
 23 ;
 24 ; Variable declarations
 25 ;
 00F0 26 sign_flag BIT 0F0H ;sign of product
 0030 27 multiplier DATA 030H ;8-bit multiplier
 0031 28 multiplicand DATA 031H ;8-bit multiplicand
 0032 29 product_high DATA 032H ;high byte of 16-bit answer
 0033 30 product_low DATA 033H ;low byte of answer
 31 ;
 32 ;
 33 ;
 0100 34 ORG 100H ;arbitrary start
 35 ;
 0100 36 byte_signed_multiply:
 0100 C2F0 37 CLR sign_flag ;reset sign
 0102 E530 38 MOV A,multiplier ;put multiplier in accumulator
 0104 30E704 39 JNB ACC.7,positive ;test sign bit of multiplier
 0107 F4 40 CPL A ;negative--complement and

 BMULB BYTE SIGNED MULTIPLY JUL-30-84 PAGE 2

 0108 04 41 INC A ;add 1 to convert to positive
 0109 D2F0 42 SETB sign_flag ;and set sign flag
 43 ;
 010B 8531F0 44 positive: MOV B,multiplicand ;put multiplicand in B register
 010E 30F707 45 JNB B.7,multiply ;test sign bit of multiplicand
 0111 63F0FF 46 XRL B,#0FFh ;negative--complement and
 0114 05F0 47 INC B ;add 1 to convert to positive
 0116 B2F0 48 CPL sign_flag ;complement sign flag
 49 ;
 0118 A4 50 multiply: MUL AB ;do unsigned multiplication
 51 ;
 0119 30F00A 52 sign_test: JNB sign_flag,byte_signed_exit ;if positive,done
 011C 63F0FF 53 XRL B,#0FFh ;else have to complement both
 011F F4 54 CPL A ;bytes of the product and inc
 0120 2401 55 ADD A,#1 ;need add here because inc doesn't set
 0122 5002 56 JNC byte_signed_exit ;the carry flag
 0124 05F0 57 INC B ;if add overflowed A, inc the high byte
 58 ;
 0126 59 byte_signed_exit:
 0126 85F032 60 MOV product_high,B ;save the answer
 0129 F533 61 MOV product_low,A
 62 ;
 012B 22 63 RET ;and return
 64 END

 ASSEMBLY COMPLETE, 0 ERRORS FOUND

 BMULB BYTE SIGNED MULTIPLY JUL-30-84 PAGE 3

 ACC D ADDR 00E0H PREDEFINED
 B D ADDR 00F0H PREDEFINED
 BYTE_SIGNED_EXIT C ADDR 0126H
 BYTE_SIGNED_MULTIPLY C ADDR 0100H NOT USED
 MULTIPLICAND D ADDR 0031H
 MULTIPLIER D ADDR 0030H
 MULTIPLY C ADDR 0118H
 POSITIVE C ADDR 010BH
 PRODUCT_HIGH D ADDR 0032H
 PRODUCT_LOW D ADDR 0033H
 SIGN_FLAG B ADDR 00F0H
 SIGN_TEST C ADDR 0119H NOT USED

B - 1

APPENDIX B

PRE-DEFINED BYTE AND BIT ADDRESSES

The following tables detail the pre-defined byte and bit addresses for the 8051/8031
microcontrollers supported by the MetaLink family of emulators. Proliferation parts are
delimited from the standard
MCS-51 definitions by asterisk ("*") boxes.

This list covers these microcontrollers:

8044 8031 8032 8051 8052 8053 80C154 80C321
8344 80C31 80C32 8751 8752 8753 83C154 80C521
8744 80C51 80C52 85C154 87C521
87C51

80C321 80C51FA(80C252) 80C452 80C152JA/JB/JC/JD 80C851
80C541 83C51FA(83C252) 83C452 83C152JA/JC 83C851
87C541 87C51FA(87C252) 87C452

80C451 80C652 80C552 83C751 83C752 80512 80515 80C515 80C517
83C451 83C652 83C552 87C751 87C752 80532 80535 80C535 80C537
87C451 87C652 87C552

B.1. Pre-defined Byte Addresses

P0 DATA 080H ;PORT 0
SP DATA 081H ;STACK POINTER
DPL DATA 082H ;DATA POINTER - LOW BYTE
DPH DATA 083H ;DATA POINTER - HIGH BYTE

** for
the 80C321/80C521
DPL1 DATA 084H ;DATA POINTER LOW 1
DPH1 DATA 085H ;DATA POINTER HIGH 1
DPS DATA 086H ;DATA POINTER SELECTION
**
** for
the 83C152/80C152
GMOD DATA 084H ;GSC MODE
TFIFO DATA 085H ;GSC TRANSMIT BUFFER
**
** for
the 80C517/80C537
WDTREL DATA 086H ;WATCHDOG TIMER RELOAD REG
**

PCON DATA 087H ;POWER CONTROL
TCON DATA 088H ;TIMER CONTROL
TMOD DATA 089H ;TIMER MODE
TL0 DATA 08AH ;TIMER 0 - LOW BYTE

B - 2

TL1 DATA 08BH ;TIMER 1 - LOW BYTE

** for
the 83C751/83C752
RTL DATA 08BH ;TIMER 0 - LOW BYTE RELOAD
**

TH0 DATA 08CH ;TIMER 0 - HIGH BYTE
TH1 DATA 08DH ;TIMER 1 - HIGH BYTE

** for
the 83C751/83C752
RTH DATA 08DH ;TIMER 0 - HIGH BYTE RELOAD
**
** for
the 83C752
PWM DATA 08EH ;PULSE WIDTH MODULATION
**

P1 DATA 090H ;PORT 1

** for
the 83C152/80C152
P5 DATA 091H ;PORT 5
DCON0 DATA 092H ;DMA CONTROL 0
DCON1 DATA 093H ;DMA CONTROL 1
BAUD DATA 094H ;GSC BAUD RATE
ADR0 DATA 095H ;GSC MATCH ADDRESS 0
**
** for
the 80C452/83C452
DCON0 DATA 092H ;DMA CONTROL 0
DCON1 DATA 093H ;DMA CONTROL 1
**
** for
the 80C517/80C537
DPSEL DATA 092H ;DATA POINTER SELECT REGISTER
**

SCON DATA 098H ;SERIAL PORT CONTROL
SBUF DATA 099H ;SERIAL PORT BUFFER

** for
the 83C751/83C752
I2CON DATA 098H ;I2C CONTROL
I2DAT DATA 099H ;I2C DATA
**
** for
the 80C517/80C537
IEN2 DATA 09AH ;INTERRUPT ENABLE REGISTER 2
S1CON DATA 09BH ;SERIAL PORT CONTROL 1
S1BUF DATA 09CH ;SERIAL PORT BUFFER 1
S1REL DATA 09DH ;SERIAL RELOAD REG 1
**

B - 3

P2 DATA 0A0H ;PORT 2
IE DATA 0A8H ;INTERRUPT ENABLE

** for
the 80C51FA/83C51FA(83C252/80C252)
SADDR DATA 0A9H ;SLAVE INDIVIDUAL ADDRESS
**
** for
the 80515/80535 and 80C517/80C537
IP0 DATA 0A9H ;INTERRUPT PRIORITY REGISTER 0
**
** for
the 80C321/80C521
WDS DATA 0A9H ;WATCHDOG SELECTION
WDK DATA 0AAH ;WATCHDOG KEY
**
** for
the 83C152/80C152
P6 DATA 0A1H ;PORT 6
SARL0 DATA 0A2H ;DMA SOURCE ADDR. 0 (LOW)
SARH0 DATA 0A3H ;DMA SOURCE ADDR. 0 (HIGH)
IFS DATA 0A4H ;GSC INTERFRAME SPACING
ADR1 DATA 0A5H ;GSC MATCH ADDRESS 1
**
** for
the 80C452/83C452
SARL0 DATA 0A2H ;DMA SOURCE ADDR. 0 (LOW)
SARH0 DATA 0A3H ;DMA SOURCE ADDR. 0 (HIGH)
**
** for
the 80C552/83C552
CML0 DATA 0A9H ;COMPARE 0 - LOW BYTE
CML1 DATA 0AAH ;COMPARE 1 - LOW BYTE
CML2 DATA 0ABH ;COMPARE 2 - LOW BYTE
CTL0 DATA 0ACH ;CAPTURE 0 - LOW BYTE
CTL1 DATA 0ADH ;CAPTURE 1 - LOW BYTE
CTL2 DATA 0AEH ;CAPTURE 2 - LOW BYTE
CTL3 DATA 0AFH ;CAPTURE 3 - LOW BYTE
**

P3 DATA 0B0H ;PORT 3

** for
the 83C152/80C152
SARL1 DATA 0B2H ;DMA SOURCE ADDR. 1 (LOW)
SARH1 DATA 0B3H ;DMA SOURCE ADDR. 1 (HIGH)
SLOTTM DATA 0B4H ;GSC SLOT TIME
ADR2 DATA 0B5H ;GSC MATCH ADDRESS 2
**
** for
the 80C452/83C452
SARL1 DATA 0B2H ;DMA SOURCE ADDR. 1 (LOW)
SARH1 DATA 0B3H ;DMA SOURCE ADDR. 1 (HIGH)
**

B - 4

IP DATA 0B8H ;INTERRUPT PRIORITY

** for
the 80C51FA/83C51FA(83C252/80C252)

SADEN DATA 0B9H ;SLAVE ADDRESS ENABLE
**
** for
the 80515/80535 and 80C517/80C537
IP1 DATA 0B9H ;INTERRUPT PRIORITY REGISTER 1
IRCON DATA 0C0H ;INTERRUPT REQUEST CONTROL
CCEN DATA 0C1H ;COMPARE/CAPTURE ENABLE
CCL1 DATA 0C2H ;COMPARE/CAPTURE REGISTER 1 - LOW BYTE
CCH1 DATA 0C3H ;COMPARE/CAPTURE REGISTER 1 - HIGH BYTE
CCL2 DATA 0C4H ;COMPARE/CAPTURE REGISTER 2 - LOW BYTE
CCH2 DATA 0C5H ;COMPARE/CAPTURE REGISTER 2 - HIGH BYTE
CCL3 DATA 0C6H ;COMPARE/CAPTURE REGISTER 3 - LOW BYTE
CCH3 DATA 0C7H ;COMPARE/CAPTURE REGISTER 3 - HIGH BYTE
T2CON DATA 0C8H ;TIMER 2 CONTROL
CRCL DATA 0CAH ;COMPARE/RELOAD/CAPTURE - LOW BYTE
CRCH DATA 0CBH ;COMPARE/RELOAD/CAPTURE - HIGH BYTE
TL2 DATA 0CCH ;TIMER 2 - LOW BYTE
TH2 DATA 0CDH ;TIMER 2 - HIGH BYTE
**
** for
the 80C517/80C537
CC4EN DATA 0C9H ;COMPARE/CAPTURE 4 ENABLE
CCL4 DATA 0CEH ;COMPARE/CAPTURE REGISTER 4 - LOW BYTE
CCH4 DATA 0CFH ;COMPARE/CAPTURE REGISTER 4 - HIGH BYTE
**
** for
the RUPI-44
STS DATA 0C8H ;SIU STATUS REGISTER
SMD DATA 0C9H ;SERIAL MODE
RCB DATA 0CAH ;RECEIVE CONTROL BYTE
RBL DATA 0CBH ;RECEIVE BUFFER LENGTH
RBS DATA 0CCH ;RECEIVE BUFFER START
RFL DATA 0CDH ;RECEIVE FIELD LENGTH
STAD DATA 0CEH ;STATION ADDRESS
DMA_CNT DATA 0CFH ;DMA COUNT
**
** for
the 8052/8032, 80C51FA/83C51FA(83C252/80C252), 80C154/83C154
T2CON DATA 0C8H ;TIMER 2 CONTROL
**
** for
the 80C51FA/83C51FA(83C252/80C252)
T2MOD DATA 0C9H ;TIMER 2 MODE CONTROL
**
** for
the 8052/8032, 80C51FA/83C51FA(83C252/80C252), 80C154/83C154
RCAP2L DATA 0CAH ;TIMER 2 CAPTURE REGISTER, LOW BYTE
RCAP2H DATA 0CBH ;TIMER 2 CAPTURE REGISTER, HIGH BYTE
TL2 DATA 0CCH ;TIMER 2 - LOW BYTE

B - 5

TH2 DATA 0CDH ;TIMER 2 - HIGH BYTE
**

** for
the 83C152/80C152
P4 DATA 0C0H ;PORT 4
DARL0 DATA 0C2H ;DMA DESTINATION ADDR. 0 (LOW)
DARH0 DATA 0C3H ;DMA DESTINATION ADDR. 0 (HIGH)
BKOFF DATA 0C4H ;GSC BACKOFF TIMER
ADR3 DATA 0C5H ;GSC MATCH ADDRESS 3
IEN1 DATA 0C8H ;INTERRUPT ENABLE REGISTER 1
**
** for
the 80C452/83C452
P4 DATA 0C0H ;PORT 4
DARL0 DATA 0C2H ;DMA DESTINATION ADDR. 0 (LOW)
DARH0 DATA 0C3H ;DMA DESTINATION ADDR. 0 (HIGH)
**
** for
the 80C451/83C451
P4 DATA 0C0H ;PORT 4
P5 DATA 0C8H ;PORT 5
**
** for
the 80512/80532
IRCON DATA 0C0H ;INTERRUPT REQUEST CONTROL
**
** for
the 80C552/83C552
P4 DATA 0C0H ;PORT 4
P5 DATA 0C4H ;PORT 5
ADCON DATA 0C5H ;A/D CONVERTER CONTROL
ADCH DATA 0C6H ;A/D CONVERTER HIGH BYTE
TM2IR DATA 0C8H ;T2 INTERRUPT FLAGS
CMH0 DATA 0C9H ;COMPARE 0 - HIGH BYTE
CMH1 DATA 0CAH ;COMPARE 1 - HIGH BYTE
CMH2 DATA 0CBH ;COMPARE 2 - HIGH BYTE
CTH0 DATA 0CCH ;CAPTURE 0 - HIGH BYTE
CTH1 DATA 0CDH ;CAPTURE 1 - HIGH BYTE
CTH2 DATA 0CEH ;CAPTURE 2 - HIGH BYTE
CTH3 DATA 0CFH ;CAPTURE 3 - HIGH BYTE
**

PSW DATA 0D0H ;PROGRAM STATUS WORD

** for
the RUPI-44
NSNR DATA 0D8H ;SEND COUNT/RECEIVE COUNT
SIUST DATA 0D9H ;SIU STATE COUNTER
TCB DATA 0DAH ;TRANSMIT CONTROL BYTE
TBL DATA 0DBH ;TRANSMIT BUFFER LENGTH
TBS DATA 0DCH ;TRANSMIT BUFFER START
FIFO0 DATA 0DDH ;THREE BYTE FIFO
FIFO1 DATA 0DEH

B - 6

FIFO2 DATA 0DFH
**

** for
the 80C51FA/83C51FA(83C252/80C252)
CCON DATA 0D8H ;CONTROL COUNTER
CMOD DATA 0D9H ;COUNTER MODE
CCAPM0 DATA 0DAH ;COMPARE/CAPTURE MODE FOR PCA MODULE 0
CCAPM1 DATA 0DBH ;COMPARE/CAPTURE MODE FOR PCA MODULE 1
CCAPM2 DATA 0DCH ;COMPARE/CAPTURE MODE FOR PCA MODULE 2
CCAPM3 DATA 0DDH ;COMPARE/CAPTURE MODE FOR PCA MODULE 3
CCAPM4 DATA 0DEH ;COMPARE/CAPTURE MODE FOR PCA MODULE 4
**
** for
the 80515/80535
ADCON DATA 0D8H ;A/D CONVERTER CONTROL
ADDAT DATA 0D9H ;A/D CONVERTER DATA
DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER
**
** for
the 83C152/80C152
DARL1 DATA 0D2H ;DMA DESTINATION ADDR. 1 (LOW)
DARH1 DATA 0D3H ;DMA DESTINATION ADDR. 1 (HIGH)
TCDCNT DATA 0D4H ;GSC TRANSMIT COLLISION COUNTER
AMSK0 DATA 0D5H ;GSC ADDRESS MASK 0
TSTAT DATA 0D8H ;TRANSMIT STATUS (DMA & GSC)
**
** for
the 80C452/83C452
DARL1 DATA 0D2H ;DMA DESTINATION ADDR. 1 (LOW)
DARH1 DATA 0D3H ;DMA DESTINATION ADDR. 1 (HIGH)
**
** for
the 80C451/83C451
P6 DATA 0D8H ;PORT 6
**
** for
the 80512/80532
ADCON DATA 0D8H ;A/D CONVERTER CONTROL
ADDAT DATA 0D9H ;A/D CONVERTER DATA
DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER
P6 DATA 0DBH ;PORT 6
**
** for
the 83C751/83C752
I2CFG DATA 0D8H ;I2C CONFIGURATION
**
** for
the 80C552/83C552 and 80C652/83C652
S1CON DATA 0D8H ;SERIAL 1 CONTROL
S1STA DATA 0D9H ;SERIAL 1 STATUS
S1DAT DATA 0DAH ;SERIAL 1 DATA
S1ADR DATA 0DBH ;SERIAL 1 SLAVE ADDRESS
**

B - 7

** for
the 80C517/80C537
CML0 DATA 0D2H ;COMPARE REGISTER 0 - LOW BYTE
CMH0 DATA 0D3H ;COMPARE REGISTER 0 - HIGH BYTE
CML1 DATA 0D4H ;COMPARE REGISTER 1 - LOW BYTE
CMH1 DATA 0D5H ;COMPARE REGISTER 1 - HIGH BYTE
CML2 DATA 0D6H ;COMPARE REGISTER 2 - LOW BYTE
CMH2 DATA 0D7H ;COMPARE REGISTER 2 - HIGH BYTE
ADCON0 DATA 0D8H ;A/D CONVERTER CONTROL 0
ADDAT DATA 0D9H ;A/D CONVERTER DATA
DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER
P7 DATA 0DBH ;PORT 7
ADCON1 DATA 0DCH ;A/D CONVERTER CONTROL 1
P8 DATA 0DDH ;PORT 8
CTRELL DATA 0DEH ;COM TIMER REL REG - LOW BYTE
CTRELH DATA 0DFH ;COM TIMER REL REG - HIGH BYTE
**

ACC DATA 0E0H ;ACCUMULATOR

** for
the 83C152/80C152
BCRL0 DATA 0E2H ;DMA BYTE COUNT 0 (LOW)
BCRH0 DATA 0E3H ;DMA BYTE COUNT 0 (HIGH)
PRBS DATA 0E4H ;GSC PSEUDO-RANDOM SEQUENCE
AMSK1 DATA 0E5H ;GSC ADDRESS MASK 1
RSTAT DATA 0E8H ;RECEIVE STATUS (DMA & GSC)
**
** for
the 80C452/83C452
BCRL0 DATA 0E2H ;DMA BYTE COUNT 0 (LOW)
BCRH0 DATA 0E3H ;DMA BYTE COUNT 0 (HIGH)
HSTAT DATA 0E6H ;HOST STATUS
HCON DATA 0E7H ;HOST CONTROL
SLCON DATA 0E8H ;SLAVE CONTROL
SSTAT DATA 0E9H ;SLAVE STATUS
IWPR DATA 0EAH ;INPUT WRITE POINTER
IRPR DATA 0EBH ;INPUT READ POINTER
CBP DATA 0ECH ;CHANNEL BOUNDARY POINTER
FIN DATA 0EEH ;FIFO IN
CIN DATA 0EFH ;COMMAND IN
**
** for
the 80515/80535
P4 DATA 0E8H ;PORT 4
**
** for
the 80C451/83C451
CSR DATA 0E8H ;CONTROL STATUS
**
** for
the 80512/80532
P4 DATA 0E8H ;PORT 4
**

B - 8

** for
the 80C552/83C552
IEN1 DATA 0E8H ;INTERRUPT ENABLE REGISTER 1
TM2CON DATA 0EAH ;T2 COUNTER CONTROL
CTCON DATA 0EBH ;CAPTURE CONTROL
TML2 DATA 0ECH ;TIMER 2 - LOW BYTE
TMH2 DATA 0EDH ;TIMER 2 - HIGH BYTE
STE DATA 0EEH ;SET ENABLE
RTE DATA 0EFH ;RESET/TOGGLE ENABLE
**
** for
the 80C51FA/83C51FA(83C252/80C252)
CL DATA 0E9H ;CAPTURE BYTE LOW
CCAP0L DATA 0EAH ;COMPARE/CAPTURE 0 LOW BYTE
CCAP1L DATA 0EBH ;COMPARE/CAPTURE 1 LOW BYTE
CCAP2L DATA 0ECH ;COMPARE/CAPTURE 2 LOW BYTE
CCAP3L DATA 0EDH ;COMPARE/CAPTURE 3 LOW BYTE
CCAP4L DATA 0EEH ;COMPARE/CAPTURE 4 LOW BYTE
**
** for
the 80C517/80C537
CTCON DATA 0E1H ;COM TIMER CONTROL REG
CML3 DATA 0E2H ;COMPARE REGISTER 3 - LOW BYTE
CMH3 DATA 0E3H ;COMPARE REGISTER 3 - HIGH BYTE
CML4 DATA 0E4H ;COMPARE REGISTER 4 - LOW BYTE
CMH4 DATA 0E5H ;COMPARE REGISTER 4 - HIGH BYTE
CML5 DATA 0E6H ;COMPARE REGISTER 5 - LOW BYTE
CMH5 DATA 0E7H ;COMPARE REGISTER 5 - HIGH BYTE
P4 DATA 0E8H ;PORT 4
MD0 DATA 0E9H ;MUL/DIV REG 0
MD1 DATA 0EAH ;MUL/DIV REG 1
MD2 DATA 0EBH ;MUL/DIV REG 2
MD3 DATA 0ECH ;MUL/DIV REG 3
MD4 DATA 0EDH ;MUL/DIV REG 4
MD5 DATA 0EEH ;MUL/DIV REG 5
ARCON DATA 0EFH ;ARITHMETIC CONTROL REG
**

B DATA 0F0H ;MULTIPLICATION REGISTER

** for
the 80C154/83C154
IOCON DATA 0F8H ;I/O CONTROL REGISTER
**
** for
the 83C152/80C152
BCRL1 DATA 0F2H ;DMA BYTE COUNT 1 (LOW)
BCRH1 DATA 0F3H ;DMA BYTE COUNT 1 (HIGH)
RFIFO DATA 0F4H ;GSC RECEIVE BUFFER
MYSLOT DATA 0F5H ;GSC SLOT ADDRESS
IPN1 DATA 0F8H ;INTERRUPT PRIORITY REGISTER 1
**
** for
the 83C851/80C851

B - 9

EADRL DATA 0F2H ;EEPROM Address Register - Low Byte
EADRH DATA 0F3H ;EEPROM Address Register - High Byte
EDAT DATA 0F4H ;EEPROM Data Register
ETIM DATA 0F5H ;EEPROM Timer Register
ECNTRL DATA 0F6H ;EEPROM Control Register
**
** for
the 80C452/83C452
BCRL1 DATA 0F2H ;DMA BYTE COUNT 1 (LOW)
BCRH1 DATA 0F3H ;DMA BYTE COUNT 1 (HIGH)
ITHR DATA 0F6H ;INPUT FIFO THRESHOLD
OTHR DATA 0F7H ;OUTPUT FIFO THRESHOLD
IEP DATA 0F8H ;INTERRUPT PRIORITY
MODE DATA 0F9H ;MODE
ORPR DATA 0FAH ;OUTPUT READ POINTER
OWPR DATA 0FBH ;OUTPUT WRITE POINTER
IMIN DATA 0FCH ;IMMEDIATE COMMAND IN
IMOUT DATA 0FDH ;IMMEDIATE COMMAND OUT
FOUT DATA 0FEH ;FIFO OUT
COUT DATA 0FFH ;COMMAND OUT
**
** for
the 80515/80535
P5 DATA 0F8H ;PORT 5
**
** for
the 80512/80532
P5 DATA 0F8H ;PORT 5
**
** for
the 83C751/83C752
I2STA DATA 0F8H ;I2C STATUS
**
** for
the 80C552/83C552
IP1 DATA 0F8H ;INTERRUPT PRIORITY REGISTER 1
PWM0 DATA 0FCH ;PULSE WIDTH REGISTER 0
PWM1 DATA 0FDH ;PULSE WIDTH REGISTER 1
PWMP DATA 0FEH ;PRESCALER FREQUENCY CONTROL
T3 DATA 0FFH ;T3 - WATCHDOG TIMER
**
** for
the 80C517/80C537
CMEN DATA 0F6H ;COMPARE ENABLE
CML6 DATA 0F2H ;COMPARE REGISTER 6 - LOW BYTE
CMH6 DATA 0F3H ;COMPARE REGISTER 6 - HIGH BYTE
CML7 DATA 0F4H ;COMPARE REGISTER 7 - LOW BYTE
CMH7 DATA 0F5H ;COMPARE REGISTER 7 - HIGH BYTE
CMSEL DATA 0F7H ;COMPARE INPUT REGISTER
P5 DATA 0F8H ;PORT 5
P6 DATA 0FAH ;PORT 6
**
** for
the 80C51FA/83C51FA(83C252/80C252)

B - 10

CH DATA 0F9H ;CAPTURE HIGH BYTE
CCAP0H DATA 0FAH ;COMPARE/CAPTURE 0 HIGH BYTE
CCAP1H DATA 0FBH ;COMPARE/CAPTURE 1 HIGH BYTE
CCAP2H DATA 0FCH ;COMPARE/CAPTURE 2 HIGH BYTE
CCAP3H DATA 0FDH ;COMPARE/CAPTURE 3 HIGH BYTE
CCAP4H DATA 0FEH ;COMPARE/CAPTURE 4 HIGH BYTE
**
** for
the 83C752
PWENA DATA 0FEH ;PULSE WIDTH ENABLE
**

B - 11

B.2. Pre-defined Bit Addresses

** for
the 83C751/83C752
SCL BIT 080H ;P0.0 - I2C SERIAL CLOCK
SDA BIT 081H ;P0.1 - I2C SERIAL DATA
**

IT0 BIT 088H ;TCON.0 - EXT. INTERRUPT 0 TYPE
IE0 BIT 089H ;TCON.1 - EXT. INTERRUPT 0 EDGE FLAG
IT1 BIT 08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE
IE1 BIT 08BH ;TCON.3 - EXT. INTERRUPT 1 EDGE FLAG
TR0 BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL
TF0 BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG
TR1 BIT 08EH ;TCON.6 - TIMER 1 ON/OFF CONTROL
TF1 BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG

** for
the 83C751/83C752
C/T BIT 08EH ;TCON.6 - COUNTER OR TIMER OPERATION
GATE BIT 08FH ;TCON.7 - GATE TIMER
**
** for
the 80515/80535
INT3 BIT 090H ;P1.0 - EXT. INTERRUPT 3/CAPT & COMP 0
INT4 BIT 091H ;P1.1 - EXT. INTERRUPT 4/CAPT & COMP 1
INT5 BIT 092H ;P1.2 - EXT. INTERRUPT 5/CAPT & COMP 2
INT6 BIT 093H ;P1.3 - EXT. INTERRUPT 6/CAPT & COMP 3
INT2 BIT 094H ;P1.4 - EXT. INTERRUPT 2
T2EX BIT 095H ;P1.5 - TIMER 2 EXT. RELOAD TRIGGER INP
CLKOUT BIT 096H ;P1.6 - SYSTEM CLOCK OUTPUT
T2 BIT 097H ;P1.7 - TIMER 2 INPUT
**
** for
the 83C152/80C152
GRXD BIT 090H ;P1.0 - GSC RECEIVER DATA INPUT
GTXD BIT 091H ;P1.1 - GSC TRANSMITTER DATA OUTPUT
DEN BIT 092H ;P1.2 - DRIVE ENABLE TO ENABLE EXT DRIVE
TXC BIT 093H ;P1.3 - GSC EXTERNAL TRANSMIT CLOCK INPU
RXC BIT 094H ;P1.4 - GSC EXTERNAL RECEIVER CLOCK INPU
**
** for
the 83C552/80C552
CT0I BIT 090H ;P1.0 - CAPTURE/TIMER INPUT 0
CT1I BIT 091H ;P1.1 - CAPTURE/TIMER INPUT 1
CT2I BIT 092H ;P1.2 - CAPTURE/TIMER INPUT 2
CT3I BIT 093H ;P1.3 - CAPTURE/TIMER INPUT 3
T2 BIT 094H ;P1.4 - T2 EVENT INPUT
RT2 BIT 095H ;P1.5 - T2 TIMER RESET SIGNAL
SCL BIT 096H ;P1.6 - SERIAL PORT CLOCK LINE I2C
SDA BIT 097H ;P1.7 - SERIAL PORT DATA LINE I2C
**

B - 12

** for
the 80C517/80C537
INT3 BIT 090H ;P1.0 - EXT. INTERRUPT 3/CAPT & COMP 0
INT4 BIT 091H ;P1.1 - EXT. INTERRUPT 4/CAPT & COMP 1
INT5 BIT 092H ;P1.2 - EXT. INTERRUPT 5/CAPT & COMP 2
INT6 BIT 093H ;P1.3 - EXT. INTERRUPT 6/CAPT & COMP 3
INT2 BIT 094H ;P1.4 - EXT. INTERRUPT 2
T2EX BIT 095H ;P1.5 - TIMER 2 EXT. RELOAD TRIGGER INPU
CLKOUT BIT 096H ;P1.6 - SYSTEM CLOCK OUTPUT
T2 BIT 097H ;P1.7 - TIMER 2 INPUT
**
** for
the 80C452/83C452 and 80C152/83C152
HLD BIT 095H ;P1.5 - DMA HOLD REQUEST I/O
HLDA BIT 096H ;P1.6 - DMA HOLD ACKNOWLEDGE OUTPUT
**
** for
the 83C751/83C752
INT0 BIT 095H ;P1.5 - EXTERNAL INTERRUPT 0 INPUT
INT1 BIT 096H ;P1.6 - EXTERNAL INTERRUPT 1 INPUT
T0 BIT 096H ;P1.7 - TIMER 0 COUNT INPUT
**

RI BIT 098H ;SCON.0 - RECEIVE INTERRUPT FLAG
TI BIT 099H ;SCON.1 - TRANSMIT INTERRUPT FLAG
RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8
TB8 BIT 09BH ;SCON.3 - TRANSMIT BIT 8
REN BIT 09CH ;SCON.4 - RECEIVE ENABLE
SM2 BIT 09DH ;SCON.5 - SERIAL MODE CONTROL BIT 2
SM1 BIT 09EH ;SCON.6 - SERIAL MODE CONTROL BIT 1
SM0 BIT 09FH ;SCON.7 - SERIAL MODE CONTROL BIT 0

** for
the 83C751/83C752
MASTER BIT(READ) 099H ;I2CON.1 - MASTER
STP BIT(READ) 09AH ;I2CON.2 - STOP
STR BIT(READ) 09BH ;I2CON.3 - START
ARL BIT(READ) 09CH ;I2CON.4 - ARBITRATION LOSS
DRDY BIT(READ) 09DH ;I2CON.5 - DATA READY
ATN BIT(READ) 09EH ;I2CON.6 - ATTENTION
RDAT BIT(READ) 09FH ;I2CON.7 - RECEIVE DATA
XSTP BIT(WRITE)098H ;I2CON.0 - TRANSMIT STOP
XSTR BIT(WRITE)099H ;I2CON.1 - TRANSMIT REPEATED START
CSTP BIT(WRITE)09AH ;I2CON.2 - CLEAR STOP
CSTR BIT(WRITE)09BH ;I2CON.3 - CLEAR START
CARL BIT(WRITE)09CH ;I2CON.4 - CLEAR ARBITRATION LOSS
CDR BIT(WRITE)09DH ;I2CON.5 - CLEAR DATA READY
IDLE BIT(WRITE)09EH ;I2CON.6 - GO IDLE
CXA BIT(WRITE)09FH ;I2CON.7 - CLEAR TRANSMIT ACTIVE
**

EX0 BIT 0A8H ;IE.0 - EXTERNAL INTERRUPT 0 ENABLE
ET0 BIT 0A9H ;IE.1 - TIMER 0 INTERRUPT ENABLE
EX1 BIT 0AAH ;IE.2 - EXTERNAL INTERRUPT 1 ENABLE

B - 13

ET1 BIT 0ABH ;IE.3 - TIMER 1 INTERRUPT ENABLE
ES BIT 0ACH ;IE.4 - SERIAL PORT INTERRUPT ENABLE
** for
the 83C751/83C752
EI2 BIT 0ACH ;IE.4 - SERIAL PORT INTERRUPT ENABLE
**
** for
the 8052/8032, 80C154/83C154, 80C252(80C51FA), 80515/80535
ET2 BIT 0ADH ;TIMER 2 INTERRUPT ENABLE
**
** for
the 80C652/83C652
ES1 BIT 0ADH ;IE.5 - SERIAL PORT 1 INTERRUPT ENABLE
**
** for
the 80C252(80C51FA)
EC BIT 0AEH ;IE.6 - ENABLE PCA INTERRUPT
**
** for
the 80515/80535
WDT BIT 0AEH ;IEN0.6 - WATCHDOG TIMER RESET
**
** for
the 83C552/80C552
ES1 BIT 0ADH ;IEN0.5 - SERIAL PORT 1 INTERRUPT ENABLE
EAD BIT 0AEH ;IEN0.6 - ENABLE A/D INTERRUPT
**
** for
the 80C517/80C537
ET2 BIT 0ADH ;IEN0.5 - TIMER 2 INTERRUPT ENABLE
WDT BIT 0AEH ;IEN0.6 - WATCHDOG TIMER RESET
**

EA BIT 0AFH ;IE.7 - GLOBAL INTERRUPT ENABLE
RXD BIT 0B0H ;P3.0 - SERIAL PORT RECEIVE INPUT
TXD BIT 0B1H ;P3.1 - SERIAL PORT TRANSMIT OUTPUT
INT0 BIT 0B2H ;P3.2 - EXTERNAL INTERRUPT 0 INPUT
INT1 BIT 0B3H ;P3.3 - EXTERNAL INTERRUPT 1 INPUT
T0 BIT 0B4H ;P3.4 - TIMER 0 COUNT INPUT
T1 BIT 0B5H ;P3.5 - TIMER 1 COUNT INPUT
WR BIT 0B6H ;P3.6 - WRITE CONTROL FOR EXT. MEMORY
RD BIT 0B7H ;P3.7 - READ CONTROL FOR EXT. MEMORY
PX0 BIT 0B8H ;IP.0 - EXTERNAL INTERRUPT 0 PRIORITY
PT0 BIT 0B9H ;IP.1 - TIMER 0 PRIORITY
PX1 BIT 0BAH ;IP.2 - EXTERNAL INTERRUPT 1 PRIORITY
PT1 BIT 0BBH ;IP.3 - TIMER 1 PRIORITY
PS BIT 0BCH ;IP.4 - SERIAL PORT PRIORITY

** for
the 80C154/83C154
PT2 BIT 0BCH ;IP.5 - TIMER 2 PRIORITY
PCT BIT 0BFH ;IP.7 - INTERRUPT PRIORITY DISABLE
**

B - 14

** for
the 80C652/83C652
PS1 BIT 0BDH ;IP.5 - SERIAL PORT 1 PRIORITY
**
** for
the 80C51FA/83C51FA(83C252/80C252)
PT2 BIT 0BDH ;IP.5 - TIMER 2 PRIORITY
PPC BIT 0BEH ;IP.6 - PCA PRIORITY
**
** for
the 80515/80535 and 80C517/80C537
EADC BIT 0B8H ;IEN1.0 - A/D CONVERTER INTERRUPT EN
EX2 BIT 0B9H ;IEN1.1 - EXT. INTERRUPT 2 ENABLE
EX3 BIT 0BAH ;IEN1.2 - EXT. INT 3/CAPT/COMP INT 0 EN
EX4 BIT 0BBH ;IEN1.3 - EXT. INT 4/CAPT/COMP INT 1 EN
EX5 BIT 0BCH ;IEN1.4 - EXT. INT 5/CAPT/COMP INT 2 EN
EX6 BIT 0BDH ;IEN1.5 - EXT. INT 6/CAPT/COMP INT 3 EN
SWDT BIT 0BEH ;IEN1.6 - WATCHDOG TIMER START
EXEN2 BIT 0BFH ;IEN1.7 - T2 EXT. RELOAD INTER START
IADC BIT 0C0H ;IRCON.0 - A/D CONVERTER INTER REQUEST
IEX2 BIT 0C1H ;IRCON.1 - EXT. INTERRUPT 2 EDGE FLAG
IEX3 BIT 0C2H ;IRCON.2 - EXT. INTERRUPT 3 EDGE FLAG
IEX4 BIT 0C3H ;IRCON.3 - EXT. INTERRUPT 4 EDGE FLAG
IEX5 BIT 0C4H ;IRCON.4 - EXT. INTERRUPT 5 EDGE FLAG
IEX6 BIT 0C5H ;IRCON.5 - EXT. INTERRUPT 6 EDGE FLAG
TF2 BIT 0C6H ;IRCON.6 - TIMER 2 OVERFLOW FLAG
EXF2 BIT 0C7H ;IRCON.7 - TIMER 2 EXT. RELOAD FLAG
T2IO BIT 0C8H ;T2CON.0 - TIMER 2 INPUT SELECT BIT 0
T2I1 BIT 0C9H ;T2CON.1 - TIMER 2 INPUT SELECT BIT 1
T2CM BIT 0CAH ;T2CON.2 - COMPARE MODE
T2R0 BIT 0CBH ;T2CON.3 - TIMER 2 RELOAD MODE SEL BIT 0
T2R1 BIT 0CCH ;T2CON.4 - TIMER 2 RELOAD MODE SEL BIT 1
I2FR BIT 0CDH ;T2CON.5 - EXT. INT 2 F/R EDGE FLAG
I3FR BIT 0CEH ;T2CON.6 - EXT. INT 3 F/R EDGE FLAG
T2PS BIT 0CFH ;T2CON.7 - PRESCALER SELECT BIT
**
** for
the 83C552/80C552
PS1 BIT 0BDH ;IP0.5 - SIO1
PAD BIT 0BEH ;IP0.6 - A/D CONVERTER
CMSR0 BIT 0C0H ;P4.0 - T2 COMPARE AND SET/RESET OUTPUTS
CMSR1 BIT 0C1H ;P4.1 - T2 COMPARE AND SET/RESET OUTPUTS
CMSR2 BIT 0C2H ;P4.2 - T2 COMPARE AND SET/RESET OUTPUTS
CMSR3 BIT 0C3H ;P4.3 - T2 COMPARE AND SET/RESET OUTPUTS
CMSR4 BIT 0C4H ;P4.4 - T2 COMPARE AND SET/RESET OUTPUTS
CMSR5 BIT 0C5H ;P4.5 - T2 COMPARE AND SET/RESET OUTPUTS
CMT0 BIT 0C6H ;P4.6 - T2 COMPARE AND TOGGLE OUTPUTS
CMT1 BIT 0C7H ;P4.7 - T2 COMPARE AND TOGGLE OUTPUTS
CTI0 BIT 0C8H ;TM2IR.0 - T2 CAPTURE 0
CTI1 BIT 0C9H ;TM2IR.1 - T2 CAPTURE 1
CTI2 BIT 0CAH ;TM2IR.2 - T2 CAPTURE 2
CTI3 BIT 0CBH ;TM2IR.3 - T2 CAPTURE 3
CMI0 BIT 0CCH ;TM2IR.4 - T2 COMPARATOR 0
CMI1 BIT 0CDH ;TM2IR.5 - T2 COMPARATOR 1

B - 15

CMI2 BIT 0CEH ;TM2IR.6 - T2 COMPARATOR 2
T2OV BIT 0CFH ;TM2IR.7 - T2 OVERFLOW
**
** for
the RUPI-44
RBP BIT 0C8H ;STS.0 - RECEIVE BUFFER PROTECT
AM BIT 0C9H ;STS.1 - AUTO/ADDRESSED MODE SELECT
OPB BIT 0CAH ;STS.2 - OPTIONAL POLL BIT
BOV BIT 0CBH ;STS.3 - RECEIVE BUFFER OVERRUN
SI BIT 0CCH ;STS.4 - SIU INTERRUPT FLAG
RTS BIT 0CDH ;STS.5 - REQUEST TO SEND
RBE BIT 0CEH ;STS.6 - RECEIVE BUFFER EMPTY
TBF BIT 0CFH ;STS.7 - TRANSMIT BUFFER FULL
**
** for
the 8052/8032, 80C154/83C154, 80C51FA/83C51FA(83C252/80C252)
CAP2 BIT 0C8H ;T2CON.0 - CAPTURE OR RELOAD SELECT
CNT2 BIT 0C9H ;T2CON.1 - TIMER OR COUNTER SELECT
TR2 BIT 0CAH ;T2CON.2 - TIMER 2 ON/OFF CONTROL
EXEN2 BIT 0CBH ;T2CON.3 - TIMER 2 EXTERNAL ENABLE FLAG
TCLK BIT 0CCH ;T2CON.4 - TRANSMIT CLOCK SELECT
RCLK BIT 0CDH ;T2CON.5 - RECEIVE CLOCK SELECT
EXF2 BIT 0CEH ;T2CON.6 - EXTERNAL TRANSITION FLAG
TF2 BIT 0CFH ;T2CON.7 - TIMER 2 OVERFLOW FLAG
**
** for
the 83C152/80C152
EGSRV BIT 0C8H ;IEN1.0 - GSC RECEIVE VALID
EGSRE BIT 0C9H ;IEN1.1 - GSC RECEIVE ERROR
EDMA0 BIT 0CAH ;IEN1.2 - DMA CHANNEL REQUEST 0
EGSTV BIT 0CBH ;IEN1.3 - GSC TRANSMIT VALID
EDMA1 BIT 0CCH ;IEN1.4 - DMA CHANNEL REQUEST 1
EGSTE BIT 0CDH ;IEN1.5 - GSC TRANSMIT ERROR
**
** for
the 80512/80532
IADC BIT 0C0H ;IRCON.0 - A/D CONVERTER INTERRUPT REQ
**

P BIT 0D0H ;PSW.0 - ACCUMULATOR PARITY FLAG

** for
the 83C552/80C552
F1 BIT 0D1H ;PSW.1 - FLAG 1
**
** for
the 80512/80532
F1 BIT 0D1H ;PSW.1 - FLAG 1
MX0 BIT 0D8H ;ADCON.0 - ANALOG INPUT CH SELECT BIT 0
MX1 BIT 0D9H ;ADCON.1 - ANALOG INPUT CH SELECT BIT 1
MX2 BIT 0DAH ;ADCON.2 - ANALOG INPUT CH SELECT BIT 2
ADM BIT 0DBH ;ADCON.3 - A/D CONVERSION MODE
BSY BIT 0DCH ;ADCON.4 - BUSY FLAG
BD BIT 0DFH ;ADCON.7 - BAUD RATE ENABLE

B - 16

**

OV BIT 0D2H ;PSW.2 - OVERFLOW FLAG
RS0 BIT 0D3H ;PSW.3 - REGISTER BANK SELECT 0
RS1 BIT 0D4H ;PSW.4 - REGISTER BANK SELECT 1
F0 BIT 0D5H ;PSW.5 - FLAG 0
AC BIT 0D6H ;PSW.6 - AUXILIARY CARRY FLAG
CY BIT 0D7H ;PSW.7 - CARRY FLAG

** for
the 80C51FA/83C51FA(83C252/80C252)
CCF0 BIT 0D8H ;CCON.0 -PCA MODULE 0 INTERRUPT FLAG
CCF1 BIT 0D9H ;CCON.1 -PCA MODULE 1 INTERRUPT FLAG
CCF2 BIT 0DAH ;CCON.2 -PCA MODULE 2 INTERRUPT FLAG
CCF3 BIT 0DBH ;CCON.3 -PCA MODULE 3 INTERRUPT FLAG
CCF4 BIT 0DCH ;CCON.4 -PCA MODULE 4 INTERRUPT FLAG
CR BIT 0DEH ;CCON.6 - COUNTER RUN
CF BIT 0DFH ;PCA COUNTER OVERFLOW FLAG
**
** for
the RUPI-44
SER BIT 0D8H ;NSNR.0 - RECEIVE SEQUENCE ERROR
NR0 BIT 0D9H ;NSNR.1 - RECEIVE SEQUENCE COUNTER-BIT 0
NR1 BIT 0DAH ;NSNR.2 - RECEIVE SEQUENCE COUNTER-BIT 1
NR2 BIT 0DBH ;NSNR.3 - RECEIVE SEQUENCE COUNTER-BIT 2
SES BIT 0DCH ;NSNR.4 - SEND SEQUENCE ERROR
NS0 BIT 0DDH ;NSNR.5 - SEND SEQUENCE COUNTER-BIT 0
NS1 BIT 0DEH ;NSNR.6 - SEND SEQUENCE COUNTER-BIT 1
NS2 BIT 0DFH ;NSNR.7 - SEND SEQUENCE COUNTER-BIT 2
**
** for
the 80515/80535
MX0 BIT 0D8H ;ADCON.0 - ANALOG INPUT CH SELECT BIT 0
MX1 BIT 0D9H ;ADCON.1 - ANALOG INPUT CH SELECT BIT 1
MX2 BIT 0DAH ;ADCON.2 - ANALOG INPUT CH SELECT BIT 2
ADM BIT 0DBH ;ADCON.3 - A/D CONVERSION MODE
BSY BIT 0DCH ;ADCON.4 - BUSY FLAG
CLK BIT 0DEH ;ADCON.5 - SYSTEM CLOCK ENABLE
BD BIT 0DFH ;ADCON.7 - BAUD RATE ENABLE
**
** for
the 80C652/83C652
CR0 BIT 0D8H ;S1CON.0 - CLOCK RATE 0
CR1 BIT 0D9H ;S1CON.1 - CLOCK RATE 1
AA BIT 0DAH ;S1CON.2 - ASSERT ACKNOWLEDGE
SI BIT 0DBH ;S1CON.3 - SIO1 INTERRUPT BIT
STO BIT 0DCH ;S1CON.4 - STOP FLAG
STA BIT 0DDH ;S1CON.5 - START FLAG
ENS1 BIT 0DEH ;S1CON.6 - ENABLE SIO1
**
** for
the 83C152/80C152
DMA BIT 0D8H ;TSTAT.0 - DMA SELECT
TEN BIT 0D9H ;TSTAT.1 - TRANSMIT ENABLE

B - 17

TFNF BIT 0DAH ;TSTAT.2 - TRANSMIT FIFO NOT FULL
TDN BIT 0DBH ;TSTAT.3 - TRANSMIT DONE
TCDT BIT 0DCH ;TSTAT.4 - TRANSMIT COLLISION DETECT
UR BIT 0DDH ;TSTAT.5 - UNDERRUN
NOACK BIT 0DEH ;TSTAT.6 - NO ACKNOWLEDGE
LNI BIT 0DFH ;TSTAT.7 - LINE IDLE
HBAEN BIT 0E8H ;RSTAT.0 - HARDWARE BASED ACKNOWLEDGE EN
GREN BIT 0E9H ;RSTAT.1 - RECEIVER ENABLE
RFNE BIT 0EAH ;RSTAT.2 - RECEIVER FIFO NOT EMPTY
RDN BIT 0EBH ;RSTAT.3 - RECEIVER DONE
CRCE BIT 0ECH ;RSTAT.4 - CRC ERROR
AE BIT 0EDH ;RSTAT.5 - ALIGNMENT ERROR
RCABT BIT 0EEH ;RSTAT.6 - RCVR COLLISION/ABORT DETECT
OR BIT 0EFH ;RSTAT.7 - OVERRUN
PGSRV BIT 0F8H ;IPN1.0 - GSC RECEIVE VALID
PGSRE BIT 0F9H ;IPN1.1 - GSC RECEIVE ERROR
PDMA0 BIT 0FAH ;IPN1.2 - DMA CHANNEL REQUEST 0
PGSTV BIT 0FBH ;IPN1.3 - GSC TRANSMIT VALID
PDMA1 BIT 0FCH ;IPN1.4 - DMA CHANNEL REQUEST 1
PGSTE BIT 0FDH ;IPN1.5 - GSC TRANSMIT ERROR
**
** for
the 80C452/83C452
OFRS BIT 0E8H ;SLCON.0 - OUTPUT FIFO CH REQ SERVICE
IFRS BIT 0E9H ;SLCON.1 - INPUT FIFO CH REQ SERVICE
FRZ BIT 0EBH ;SLCON.3 - ENABLE FIFO DMA FREEZE MODE
ICOI BIT 0ECH ;SLCON.4 - GEN INT WHEN IMMEDIATE COMMAN
OUT REGISTER IS AVAILABLE
ICII BIT 0EDH ;SLCON.5 - GEN INT WHEN A COMMAND IS
WRITTEN TO IMMEDIATE COMMAND IN REG
OFI BIT 0EEH ;SLCON.6 - ENABLE OUTPUT FIFO INTERRUPT
IFI BIT 0EFH ;SLCON.7 - ENABLE INPUT FIFO INTERRUPT
EFIFO BIT 0F8H ;IEP.0 - FIFO SLAVE BUS I/F INT EN
PDMA1 BIT 0F9H ;IEP.1 - DMA CHANNEL REQUEST 1
PDMA0 BIT 0FAH ;IEP.2 - DMA CHANNEL REQUEST 0
EDMA1 BIT 0FBH ;IEP.3 - DMA CHANNEL 1 INTERRUPT ENABLE
EDMA0 BIT 0FCH ;IEP.4 - DMA CHANNEL 0 INTERRUPT ENABLE
PFIFO BIT 0FDH ;IEP.5 - FIFO SLAVE BUS I/F INT PRIORITY
**
** for
the 80C451/83C451
IBF BIT 0E8H ;CSR.0 - INPUT BUFFER FULL
OBF BIT 0E9H ;CSR.1 - OUTPUT BUFFER FULL
IDSM BIT 0EAH ;CSR.2 - INPUT DATA STROBE
OBFC BIT 0EBH ;CSR.3 - OUTPUT BUFFER FLAG CLEAR
MA0 BIT 0ECH ;CSR.4 - AFLAG MODE SELECT
MA1 BIT 0EDH ;CSR.5 - AFLAG MODE SELECT
MB0 BIT 0EEH ;CSR.6 - BFLAG MODE SELECT
MB1 BIT 0EFH ;CSR.7 - BFLAG MODE SELECT
**
** for
the 83C751/83C752
CTO BIT(READ) 0D8H ;I2CFG.0 - CLOCK TIMING 0
CT1 BIT(READ) 0D9H ;I2CFG.1 - CLOCK TIMING 1

B - 18

T1RUN BIT(READ) 0DCH ;I2CFG.4 - START/STOP TIMER 1
MASTRQ BIT(READ) 0DEH ;I2CFG.6 - MASTER I2C
SLAVEN BIT(READ) 0DFH ;I2CFG.7 - SLAVE I2C
CT0 BIT(WRITE)0D8H ;I2CFG.0 - CLOCK TIMING 0
CT1 BIT(WRITE)0D9H ;I2CFG.1 - CLOCK TIMING 1
TIRUN BIT(WRITE)0DCH ;I2CFG.4 - START/STOP TIMER 1
CLRTI BIT(WRITE)0DDH ;I2CFG.5 - CLEAR TIMER 1 INTERRUPT FLAG
MASTRQ BIT(WRITE)0DEH ;I2CFG.6 - MASTER I2C
SLAVEN BIT(WRITE)0DFH ;I2CFG.7 - SLAVE I2C
RSTP BIT(READ) 0F8H ;I2STA.0 - XMIT STOP CONDITION
RSTR BIT(READ) 0F9H ;I2STA.1 - XMIT REPEAT STOP COND.
MAKSTP BIT(READ) 0FAH ;I2STA.2 - STOP CONDITION
MAKSTR BIT(READ) 0FBH ;I2STA.3 - START CONDITION
XACTV BIT(READ) 0FCH ;I2STA.4 - XMIT ACTIVE
XDATA BIT(READ) 0FDH ;I2STA.5 - CONTENT OF XMIT BUFFER
RIDLE BIT(READ) 0FEH ;I2STA.6 - SLAVE IDLE FLAG
**
** for
the 83C552/80C552
CR0 BIT 0D8H ;S1CON.0 - CLOCK RATE 0
CR1 BIT 0D9H ;S1CON.1 - CLOCK RATE 1
AA BIT 0DAH ;S1CON.2 - ASSERT ACKNOWLEDGE
SI BIT 0DBH ;S1CON.3 - SERIAL I/O INTERRUPT
STO BIT 0DCH ;S1CON.4 - STOP FLAG
STA BIT 0DDH ;S1CON.5 - START FLAG
ENS1 BIT 0DEH ;S1CON.6 - ENABLE SERIAL I/O
ECT0 BIT 0E8H ;IEN1.0 - ENABLE T2 CAPTURE 0
ECT1 BIT 0E9H ;IEN1.1 - ENABLE T2 CAPTURE 1
ECT2 BIT 0EAH ;IEN1.2 - ENABLE T2 CAPTURE 2
ECT3 BIT 0EBH ;IEN1.3 - ENABLE T2 CAPTURE 3
ECM0 BIT 0ECH ;IEN1.4 - ENABLE T2 COMPARATOR 0
ECM1 BIT 0EDH ;IEN1.5 - ENABLE T2 COMPARATOR 1
ECM2 BIT 0EEH ;IEN1.6 - ENABLE T2 COMPARATOR 2
ET2 BIT 0EFH ;IEN1.7 - ENABLE T2 OVERFLOW
PCT0 BIT 0F8H ;IP1.0 - T2 CAPTURE REGISTER 0
PCT1 BIT 0F9H ;IP1.1 - T2 CAPTURE REGISTER 1
PCT2 BIT 0FAH ;IP1.2 - T2 CAPTURE REGISTER 2
PCT3 BIT 0FBH ;IP1.3 - T2 CAPTURE REGISTER 3
PCM0 BIT 0FCH ;IP1.4 - T2 COMPARATOR 0
PCM1 BIT 0FDH ;IP1.5 - T2 COMPARATOR 1
PCM2 BIT 0FEH ;IP1.6 - T2 COMPARATOR 2
PT2 BIT 0FFH ;IP1.7 - T2 OVERFLOW
**
** for
the 80C517/80C537
F1 BIT 0D1H ;PSW.1 - FLAG 1
MX0 BIT 0D8H ;ADCON0.0 - ANALOG INPUT CH SELECT BIT 0
MX1 BIT 0D9H ;ADCON0.1 - ANALOG INPUT CH SELECT BIT 1
MX2 BIT 0DAH ;ADCON0.2 - ANALOG INPUT CH SELECT BIT 2
ADM BIT 0DBH ;ADCON0.3 - A/D CONVERSION MODE
BSY BIT 0DCH ;ADCON0.4 - BUSY FLAG
CLK BIT 0DEH ;ADCON0.5 - SYSTEM CLOCK ENABLE
BD BIT 0DFH ;ADCON0.7 - BAUD RATE ENABLE
**

B - 19

** for
the 80C154/83C154
ALF BIT 0F8H ;IOCON.0 - CPU POWER DOWN MODE CONTROL
P1F BIT 0F9H ;IOCON.1 - PORT 1 HIGH IMPEDANCE
P2F BIT 0FAH ;IOCON.2 - PORT 2 HIGH IMPEDANCE
P3F BIT 0FBH ;IOCON.3 - PORT 3 HIGH IMPEDANCE
IZC BIT 0FCH ;IOCON.4 - 10K TO 100 K OHM SWITCH (P1-3)
SERR BIT 0FDH ;IOCON.5 - SERIAL PORT RCV ERROR FLAG
T32 BIT 0FEH ;IOCON.6 - 32 BIT TIMER SWITCH
WDT BIT 0FFH ;IOCON.7 - WATCHDOG TIMER CONTROL

C - 1

APPENDIX C

RESERVED SYMBOLS

The following is a list of reserved symbols used by the Cross Assembler. These symbols
cannot be redefined.

A AB ACALL ADD
ADDC AJMP AND ANL
AR0 AR1 AR2 AR3
AR4 AR5 AR6 AR7
BIT BSEG C CALL
CJNE CLR CODE CPL
CSEG DA DATA DB
DBIT DEC DIV DJNZ
DPTR DS DSEG DW
END EQ EQU GE
GT HIGH IDATA INC
ISEG JB JBC JC
JMP JNB JNC JNZ
JZ LCALL LE LJMP
LOW LT MOD MOV
MOVC MOVX MUL NE
NOP NOT OR ORG
ORL PC POP PUSH
R0 R1 R2 R3
R4 R5 R6 R7
RET RETI RL RLC
RR RRC SET SETB
SHL SHR SJMP SUBB
SWAP USING XCH XCHD
XDATA XOR XRL XSEG

D - 1

APPENDIX D

CROSS ASSEMBLER CHARACTER SET
---------------------------+---------------+-------------------
 | PRINTABLE | ASCII CODE
 CHARACTER NAME | FORM | HEX | DECIMAL
---------------------------+---------------+--------+----------
Horizontal Tab | | 09 | 9
Line Feed | | 0A | 10
Carriage Return | | 0D | 13
Space | | 20 | 32
Exclamation Point | ! | 21 | 33
Pound Sign | # | 23 | 35
Dollar Sign | $ | 24 | 36
Percent Sign | % | 25 | 37
Ampersand | & | 26 | 38
Apostrophe | ' | 27 | 39
Left Parenthesis | (| 28 | 40
Right Parenthesis |) | 29 | 41
Asterisk | * | 2A | 42
Plus sign | + | 2B | 43
Comma | , | 2C | 44
Hyphen | - | 2D | 45
Period | . | 2E | 46
Slash | / | 2F | 47
Number 0 | 0 | 30 | 48
 " 1 | 1 | 31 | 49
 " 2 | 2 | 32 | 50
 " 3 | 3 | 33 | 51
 " 4 | 4 | 34 | 52
 " 5 | 5 | 35 | 53
 " 6 | 6 | 36 | 54
 " 7 | 7 | 37 | 55
 " 8 | 8 | 38 | 56
 " 9 | 9 | 39 | 57
Colon | : | 3A | 58
Semi-colon | ; | 3B | 59
Left Angle Bracket | < | 3C | 60
Equal Sign | = | 3D | 61
Right Angle Bracket | > | 3E | 62
Question Mark | ? | 3F | 63
At Sign | @ | 40 | 64
Upper Case A | A | 41 | 65
 " " B | B | 42 | 66
 " " C | C | 43 | 67
 " " D | D | 44 | 68
 " " E | E | 45 | 69
 " " F | F | 46 | 70
 " " G | G | 47 | 71
 " " H | H | 48 | 72
 " " I | I | 49 | 73
 " " J | J | 4A | 74

D - 2

 " " K | K | 4B | 75
 " " L | L | 4C | 76
 " " M | M | 4D | 77
 " " N | N | 4E | 78
 " " O | O | 4F | 79
 " " P | P | 50 | 80
 " " Q | Q | 51 | 81
 " " R | R | 52 | 82
 " " S | S | 53 | 83
 " " T | T | 54 | 84
 " " U | U | 55 | 85
 " " V | V | 56 | 86
 " " W | W | 57 | 87
 " " X | X | 58 | 88
 " " Y | Y | 59 | 89
 " " Z | Z | 5A | 90
Underscore | _ | 5F | 95
Lower Case A | a | 61 | 97
 " " B | b | 62 | 98
 " " C | c | 63 | 99
 " " D | d | 64 | 100
 " " E | e | 65 | 101
 " " F | f | 66 | 102
 " " G | g | 67 | 103
 " " H | h | 68 | 104
 " " I | i | 69 | 105
 " " J | j | 6A | 106
 " " K | k | 6B | 107
 " " L | l | 6C | 108
 " " M | m | 6D | 109
 " " N | n | 6E | 110
 " " O | o | 6F | 111
 " " P | p | 70 | 112
 " " Q | q | 71 | 113
 " " R | r | 72 | 114
 " " S | s | 73 | 115
 " " T | t | 74 | 116
 " " U | u | 75 | 117
 " " V | v | 76 | 118
 " " W | w | 77 | 119
 " " X | x | 78 | 120
 " " Y | y | 79 | 121
 " " Z | z | 7A | 122

