8051 CROSS ASSEMBLER
USER'S MANUAL

MetaLink Corporation
Chandler, Arizona

MetaLink Corporation
Chandler, Arizona
(480) 926-0797
EMAIL: asm51@metaice.com
FAX: (480) 926-1198

PURCHASE TERMS AND CONDITIONS

Since MetaLink Corporation does business and is located solely in the State of Arizona,
such orders or agreements and the rights of the parties hereunder shall be governed by
the laws of the State of Arizona.

LIMITED WARRANTY: METALINK MAKES NO WARRANTIES OTHER THAN THOSE
CONTAINED HEREIN AND METALINK EXPRESSLY DISCLAIMS ANY AND ALL
IMPLIED WARRANTIES, INCLUDING ANY WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR OF MERCHANTABILITY.

NOTICE
MetaLink Corp. reserves the right to make improvements in the software product
described in this manual as well as the manual itself at any time and without notice.
DISCLAIMER OF ALL WARRANTIES AND LIABILITY
METALINK CORP. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE
DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY,
OR FITNESS FOR ANY PARTICULAR PURPOSE. METALINK CORP. SOFTWARE IS
SOLD OR LICENSED "AS IS". IN NO EVENT SHALL METALINK CORP. BE LIABLE
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE.
Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989, 1990 MetaLink Corp.
All rights are reserved. This manual may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form
without the prior agreement and written permission of MetaLink Corp.
MS-DOS is a trademark of Microsoft, Inc.
IBM is a registered trademark of IBM Corp.

Intel is a registered trademark of Intel Corp.

MetaLink is a trademark of MetaLink Corp.

Formatting of this manual provided by: David Fletcher

TABLE OF CONTENTS

8051 OVERVIEW ... e e 1-1
INtrOdUCHION . . . o e 1-1
BO5L ArChiteCtureo 1-2
Summary of the 8051 Family of Components 1-3
REfIENCES ... i e 1-5
8051 CROSS ASSEMBLER OVERVIEW e 2-1
INtrOdUCHION . ..o e 2-1
SYMDOIS . .. 2-1
LabelS . 2-2
Assembler CoNntrols 2-3
Assembler DIreCtiVeS 2-3
8051 INStruction MNEMONICSo\ttt et et e e 2-4
Bit AdAresSSINg . ..ot e 2-5
ASCIILLItErals i 2-6
COMMBNES . . 2-6
The Location CoUNter e e e e e e 2-6
SYNtAX SUMMATY . . . oo e e e e e e e e 2-6
Numbers and OpPeratorsuit ittt ettt e 2-7
Source File Listingo 2-9
ObjeCt File .. 2-11
RUNNING THE 8051 CROSS ASSEMBLER i 3-1
Cross Assembler Fileso 3-1
Minimum System Requirements e 3-1
Running the Cross Assembler i 3-2
Example Running the Cross Assemblero.... 3-3
DOS Hints and SUQQestiONSot 3-4
REIEIENCES ... i 3-5
8051 INSTRUCTION SET ..ottt e e e et 4-1
N ALION e 4-1
8051 Instruction Set SUMMaAryco ittt 4-5
NS .t e 4-9
REfEIENCES ... i 4-10
8051 CROSS ASSEMBLERDIRECTIVESo e 5-1
INtrOdUCHION 5-1
Symbol Definition DireCtiveso 5-1
Segment Selection DIreCtiVeSt e 5-4
Memory Reservation and Storage Directives, 5-5
Miscellaneous DIreCtivesSt e e 5-7

Conditional Assembly DireCtivest 5-9

8051 CROSS ASSEMBLER CONTROLS 6-1

INtrOdUCHION . . o 6-1
Assembler Control DeSCriptionst 6-1

8051 CROSS ASSEMBLER MACRO PROCESSORociiiiiiiinn 7-1
INtrOdUCHION 7-1

Macro Definition 7-1
Special Macro OPeratorsottt e 7-3

USING MaACIOS ...ttt et ettt et e e e 7-3
NESTING MACROS e e 7-4
LABELSINMACROS e e e 7-6

8051 CROSS ASSEMBLER ERROR CODES 8-1
INtrOdUCHION 8-1
Explanation of Error MESSages oo oottt 8-2
SAMPLE PROGRAM AND LISTING e e e e A-1
Source File ... A-1
Source File LiStingo A-3
PRE-DEFINED BYTE AND BITADDRESSES i B-1
Pre-defined Byte AdAreSSES ovii i e e e B-1
Pre-defined Bit Addresses ... B-11
RESERVED SYMBOLS ... e e C-1

CROSS ASSEMBLER CHARACTER SET D-1

CHAPTER 1

8051 OVERVIEW
1.1. Introduction

The 8051 series of microcontrollers are highly integrated single chip microcomputers with
an 8-bit CPU, memory, interrupt controller, timers, serial I/O and digital I/O on a single
piece of silicon. The current members of the 8051 family of components include:

80C152JA/JB/JC/ID, 83C152JA/JC, 80C157
80C154, 83C154, 85C154

8044, 8344, 8744

80C451, 83C451, 87C451

80C452, 83C452, 87C452

8051, 8031, 8751, 80C51, 80C31, 87C51
80512, 80532

80515, 80535, 80C535, 80C515

80C517, 80C537

80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC
8052, 8032, 8752

80C321, 80C521, 87C521, 80C541, 87C541
8053, 9761, 8753

80C552, 83C552, 87C552

80C652, 83C652, 87C652

83C654, 87C654

83C751, 87C751

83C752, 87C752

80C851, 83C851

All members of the 8051 series of microcontrollers share a common architecture. They all
have the same instruction set, addressing modes, addressing range and memory spaces.
The primary differences between different 8051 based products are the amount of memory
on chip, the amount and types of I/O and peripheral functions, and the component's
technology (see Table 1-1).

In the brief summary of the 8051 architecture that follows, the term 8051 is used to mean
collectively all available members of the 8051 family. Please refer to reference (1) for a
complete description of the 8051 architecture and the specifications for all the currently
available 8051 based products.

1.2. 8051 Architecture

The 8051 is an 8-bit machine. Its memory is organized in bytes and practically all its
instruction deal with byte quantities. It uses an Accumulator as the primary register for
instruction results. Other operands can be accessed using one of the four different
addressing modes available: register implicit, direct, indirect or immediate. Operands
reside in one of the five memory spaces of the 8051.

The five memory spaces of the 8051 are: Program Memory, External Data Memory,
Internal Data Memory, Special Function Registers and Bit Memory.

The Program Memory space contains all the instructions, immediate data and constant
tables and strings. Itis principally addressed by the 16-bit Program Counter (PC), but it
can also be accessed by a few instructions using the 16-bit Data Pointer (DPTR). The
maximum size of the Program Memory space is 64K bytes. Several 8051 family
members integrate on-chip some amount of either masked programmed ROM or EPROM
as part of this memory space (refer to Table 1-1).

The External Data Memory space contains all the variables, buffers and data structures
that can't fit on-chip. It is principally addressed by the 16-bit Data Pointer (DPTR),
although the first two general purpose register (R0,R1) of the currently selected register
bank can access a 256-byte bank of External Data Memory. The maximum size of the
External Data Memory space is 64Kbytes. External data memory can only be accessed
using the indirect addressing mode with the DPTR, RO or R1.

The Internal Data Memory space is functionally the most important data memory space. In
it resides up to four banks of general purpose registers, the program stack, 128 bits of the
256-bit memory, and all the variables and data structures that are operated on directly by
the program. The maximum size of the Internal Data Memory space is 256-bytes.
However, different 8051 family members integrate different amounts of this memory space
on chip (see Amnt of RAM in Table 1-1). The register implicit, indirect and direct
addressing modes can be used in different parts of the Internal Data Memory space.

The Special Function Register space contains all the on-chip peripheral I/O registers as
well as particular registers that need program access. These registers include the Stack
Pointer, the PSW and the Accumulator. The maximum number of Special Function
Registers (SFRs) is 128, though the actual number on a particular 8051 family member
depends on the number and type of peripheral functions integrated on-chip (see Table
1-1). The SFRs all have addresses greater than 127 and overlap the address space of the
upper 128 bytes of the Internal Data Memory space. The two memory spaces are
differentiated by addressing mode. The SFRs can only be accessed using the Direct
addressing mode while the upper 128 bytes of the Internal Data Memory (if integrated
on-chip) can only be accessed using the Indirect addressing mode.

The Bit Memory space is used for storing bit variables and flags. There are specific
instructions in the 8051 that operate only in the Bit Memory space. The maximum size of
the Bit Memory space is 256-bits. 128 of the bits overlap with 16-bytes of the Internal Data
Memory space and 128 of the bits overlap with 16 Special Function Registers. Bits can
only be accessed using the bit instructions and the Direct addressing mode.

The 8051 has a fairly complete set of arithmetic and logical instructions. It includes an
8X8 multiply and an 8/8 divide. The 8051 is particularly good at processing bits
(sometimes called Boolean Processing). Using the Carry Flag in the PSW as a single bit
accumulator, the 8051 can move and do logical operations between the Bit Memory space
and the Carry Flag. Bits in the Bit Memory space can also be used as general purpose
flags for the test bit and jump instructions.

Except for the MOVE instruction, the 8051 instructions can only operate on either the
Internal Data Memory space or the Special Function Registers. The MOVE instruction
operates in all memory spaces, including the External Memory space and Program
Memory space.

Program control instructions include the usual unconditional calls and jumps as well as
conditional relative jumps based on the Carry Flag, the Accumulator's zero state, and the
state of any bit in the Bit Memory space. Also available is a Compare and

Jump if Not Equal instruction and a Decrement Counter and Jump if Not Zero loop
instruction. See Chapter 4 for a description of the complete 8051 instruction set.

1.3. Summary of the 8051 Family of Components

Component Technology Amnt of ROM Type of ROM | Amnt of RAM No. of SFRs Serial I/0O Type
8031 HMOS 0 -- 128bytes 21 Start/Stop Async
8051 HMOS 4Kbytes Masked 128bytes 21 Start/Stop Async
8751 HMOS 4Kbytes EPROM 128bytes 21 Start/Stop Async
8053 HMOS 8Kbytes Masked 128bytes 21 Start/Stop Async
9761 HMOS 8Kbytes EPROM 128bytes 21 Start/Stop Async
8751 HMOS 8Khbytes EPROM 128bytes 21 Start/Stop Async

80C31 CMOS 0 -- 128bytes 21 Start/Stop Async
80C51 CMOS 4Kbytes Masked 128bytes 21 Start/Stop Async
87C51 CMOS 4Kbytes EPROM 128bytes 21 Start/Stop Async
8032 HMOS 0 -- 256bytes 26 Start/Stop Async
8052 HMOS 8Kbytes Masked 256bytes 26 Start/Stop Async
8752 HMOS 8Kbytes EPROM 256bytes 26 Start/Stop Async
80C32 CMOS 0 -- 256bytes 26 Start/Stop Async
80C52 CMOS 8Kbytes Masked 256bytes 26 Start/Stop Async
87C52 CMOS 8Kbytes EPROM 256bytes 26 Start/Stop Async
8044 HMOS 4Kbytes Masked 192bytes 34 HDLC/SDLC

Component Technology Amnt of ROM Type of ROM | Amnt of RAM No. of SFRs Serial /0O Type
8344 HMOS 0 - 192bytes 34 HDLC/SDLC
8744 HMOS 4Kbytes EPROM 192bytes 34 HDLC/SDLC
80535 HMOS 0 -- 256bytes 41 Start/Stop Async
80515 HMOS 8Kbytes Masked 256bytes 41 Start/Stop Async
80C535 CHMOS 0 -- 256bytes 41 Start/Stop Async
80C515 CHMOS 8Kbytes Masked 256bytes 41 Start/Stop Async
80532 HMOS 0 -- 128bytes 28 Start/Stop Async
80512 HMOS 4Kbytes Masked 128bytes 28 Start/Stop Async
80C152 CHMOS 0 -- 256bytes 56 CSMA/CD
83C152 CHMOS 8Kbytes Masked 256bytes 56 CSMA/CD
80C154 CMOS 0 -- 256bytes 27 Start/Stop Async
83C154 CMOS 16Kbytes Masked 256bytes 27 Start/Stop Async
85C154 CMOS 16Kbytes EPROM 256bytes 27 Start/Stop Async
80C51FA CHMOS 0 -- 256 bytes 47 Start/Stop Async
83C51FA CHMOS 8Kbytes Masked 256 bytes a7 Start/Stop Async
87C51FA CHMOS 8Kbytes EPROM 256 bytes 47 Start/Stop Async
83C51FB CHMOS 16Kbytes Masked 256 bytes 47 Start/Stop Async
87C51FB CHMOS 16Kbytes EPROM 256 bytes 47 Start/Stop Async
83C51FB CHMOS 32Kbytes Masked 256 bytes 47 Start/Stop Async
87C51FB CHMOS 32Kbytes EPROM 256 bytes 47 Start/Stop Async
80C537 CHMOS 0 -- 256 bytes 41 Start/Stop Async
80C517 CHMOS 8Kbytes Masked 256 bytes 82 Start/Stop Async
80C451 CMOS 0 -- 128 bytes 24 Parallel I/F
83C451 CMOS 4Kbytes Masked 128 bytes 24 Parallel I/F
87C451 CMOS 4Kbytes EPROM 128 bytes 24 Parallel I/F
80C452 CHMOS 0 - 256 bytes 55 UP.L
83C452 CHMOS 8Kbytes -- 256 bytes 55 UP.
87C452 CHMOS 8Kbytes -- 256 bytes 55 UP.
80C552 CMOS 0 -- 256 bytes 54 Start/Stop Async
83C552 CMOS 8Kbytes Masked 256 bytes 54 Start/Stop Async
87C552 CMOS 8Kbytes EPROM 256 bytes 54 Start/Stop Async
80C652 CMOS 0 -- 256 bytes 24 Start/Stop Async
83C652 CMOS 8Kbytes Masked 256 bytes 24 Start/Stop Async
87C652 CMOS 8Kbytes EPROM 256 bytes 24 Start/Stop Async
83C654 CMOS 16Kbytes Masked 256 bytes 24 Start/Stop Async
87C654 CMOS 16Kbytes EPROM 256 bytes 24 Start/Stop Async
83C752 CMOS 2Kbytes Masked 64 bytes 25 12C
87C752 CMOS 2Kbytes EPROM 64 bytes 25 12C

Component Technology Amnt of ROM Type of ROM | Amnt of RAM No. of SFRs Serial I/0 Type
83C751 CMOS 2Kbytes Masked 64 bytes 20 12C
87C751 CMOS 2Kbytes EPROM 64 bytes 20 12C
80C521 CMOS 0 - 256 bytes 26 Start/Stop Async
80C321 CMOS 8Kbytes Masked 256 bytes 26 Start/Stop Async
87C521 CMOS 8Kbytes EPROM 256 bytes 26 Start/Stop Async
80C541 CMOS 16Kbytes Masked 256 bytes 26 Start/Stop Async
87C5h41 CMOS 16Kbytes EPROM 256 bytes 26 Start/Stop Async
80C851 CMOS 0 -- 128 bytes 21 Start/Stop Async
83C851 CMOS 4Kbytes Masked 128 bytes 21 Start/Stop Async

Table 1-1: 8051 Family of Components

1.4. References

PwbNPE

Intel Corp., 8-Bit Embedded Controllers, 1990.
Siemens Corp., Microcontroller Component 80515, 1985.

AMD Corp., Eight-Bit 8B0C51 Embedded Processors, 1990.
Signetics Corp., Microcontroller Users' Guide, 1989.

CHAPTER 2
8051 CROSS ASSEMBLER OVERVIEW
2.1. Introduction

The 8051 Cross Assembler takes an assembly language source file created with a text
editor and translates it into a machine language object file. This translation process is
done in two passes over the source file. During the first pass, the Cross Assembler builds
a symbol table from the symbols and labels used in the source file. It's during the second
pass that the Cross Assembler actually translates the source file into the machine
language object file. Itis also during the second pass that the listing is generated.

The following is a discussion of the syntax required by the Cross Assembler to generate
error free assemblies.

2.2. Symbols

Symbols are alphanumeric representations of numeric constants, addresses, macros, etc.
The legal character set for symbols is the set of letters, both upper and lower case
(A..Z,a..z), the set of decimal numbers (0..9) and the special characters, question mark (?)
and underscore (_). To ensure that the Cross Assembler can distinguish between a
symbol and a number, all symbols must start with either a letter or special character (? or
_). The following are examples of legal symbols:

PI
Serial Port_Buffer
LOC 4096

?_??

In using a symbol, the Cross Assembler converts all letters to upper case. As a result, the
Cross Assembler makes no distinction between upper and lower case letters. For
example, the following two symbols would be seen as the same symbol by the Cross
Assembler:

Serial _Port_Buffer
SERI AL_PORT_BUFFER

Symbols can be defined only once. Symbols can be up to 255 characters in length, though
only the first 32 are significant. Therefore, for symbols to be unique, they must have a
unique character pattern within the first 32 characters. In the following example, the first
two symbols would be seen by the Cross Assembler as duplicate symbols, while the third
and fourth symbols are unique.

BEG NNI NG_ADDRESS_OF CONSTANT_TABLE_1
BEG NNI NG_ADDRESS_OF CONSTANT_TABLE_2

CONSTANT_TABLE_1_BEG NNI NG_ADDRESS
CONSTANT_TABLE_2_BEG NNI NG_ADDRESS

There are certain symbols that are reserved and can't be defined by the user. These
reserved symbols are listed in Appendix C and include the assembler directives, the 8051
instruction mnemonics, implicit operand symbols, and the following assembly time
operators that have alphanumeric symbols: EQ, NE, GT, GE, LT, LE, HIGH, LOW, MOD,
SHR, SHL, NOT, AND, OR and XOR.

The reserved implicit operands include the symbols A, AB, C, DPTR, PC, RO, R1, R2, R3,
R4, R5, R6, R7, ARO, AR1, AR2, AR3, AR4, AR5, AR6 and AR7. These symbols are
used primarily as instruction operands. Except for AB, C, DPTR or PC, these symbols
can also be used to define other symbols (see EQU directive in Chapter 5).

The following are examples of illegal symbols with an explanation of why they are illegal:

1ST_VARI ABLE (Synbols can not start with a nunber.)
ALPHA# (I'l'legal character "#" in synbol.)

MOV (8051 instruction mMmenonic)

LOW (Assenbl y operator)

DATA (Assenbly directive)

2.3. Labels

Labels are special cases of symbols. Labels are used only before statements that have
physical addresses associated with them. Examples of such statements are assembly
language instructions, data storage directives (DB and DW), and data reservation
directives (DS and DBIT). Labels must follow all the rules of symbol creation with the
additional requirement that they be followed by a colon. The following are legal examples
of label uses:

TABLE_OF CONTROL_CONSTANTS
DB 0,1,2,3,4,5 (Dat a storage)

MESSACE: DB " HELP' (Dat a storage)

VARI ABLES: DS 10 (Data reservation)

BI T_VARI ABLES: DBIT 16 (Data reservation)

START: MOV A #23 (Assenbly | anguage instruction)

2.4. Assembler Controls

Assembler controls are used to control where the Cross Assembler gets its input source
file, where it puts the object file, and how it formats the listing file. Table 2-1 summarizes
the assembler controls available. Refer to Chapter 6 for a detailed explanation of the

controls.
$DATE(date) Places date in page header $EJECT Places a form feed in listing
$INCLUDE(file) Inserts file in source program $LIST Allows listing to be output
$NOLIST Stops outputting the listing $MOD51 Uses 8051 predefined symbols
$MOD52 Uses 8052 predefined symbols $MOD44 Uses 8044 predefined symbols
$NOMOD No predefined symbols used $OBJIECT (file) Places object output in file
$NOOBJIECT No object file is generated $PAGING Break output listing into pages
$NOPAGING Print listing w/o page breaks $PAGELENGTH(n) No. of lines on a listing page
$PAGEWIDTH(n) No. of columns on a listing page $PRINT(file) Places listing output in file
$NOPRINT Listing will not be output $SYMBOLS Append symbol table to listing
$NOSYMBOLS Symbol table will not be output $TITLE(string) Places string in page header

Table 2-1: Summary of Cross Assembler Controls

As can be seen in Table 2-1, all assembler controls are prefaced with a dollar sign ($). No
spaces or tabs are allowed between the dollar sign and the body of the control. Also, only
one control per line is permitted. However, comments can be on the same line as a
control. The following are examples of assembler controls:

$TI TLE(8051 Program Ver. 1.0)
$LI ST
$PAGEW DTH(132)

2.5. Assembler Directives

Assembler directives are used to define symbols, reserve memory space, store values in
program memory and switch between different memory spaces. There are also directives
that set the location counter for the active segment and identify the end of the source file.
Table 2-2 summarizes the assembler directives available. These directives are fully
explained in Chapter 5.

EQU Define symbol DATA Define internal memory symbol

IDATA Defin indirectly addressed internal memory XDATA Define external memory symbol
symbol

BIT Define internal bit memory symbol CODE Define program memory symbol

DS Reserve bytes of data memory DBIT Reserve bits of bit memory

DB Store byte values in program memory Dw Store word values in program memory

ORG Set segment location counter END End of assembly language source file

CSEG Select program memory space DSEG Select internal memory data space

XSEG Select external memory data space ISEG Select indirectly addressed internal

memory space
BSEG Select bit addressable memory space IF Begin conditional assembly block
ELSE Alternative conditional assembly block ENDIF End conditional assembly block

USING Select register bank
Table 2-2: Summary of Cross Assembler Directives

Only one directive per line is allowed, however comments may be included. The following
are examples of assembler directives:

TEN EQU 10
RESET CCDE 0
ORG 4096

2.6. 8051 Instruction Mnemonics

The standard 8051 Assembly Language Instruction mnemonics plus the generic CALL and
JMP instructions are recognized by the Cross Assembler and are summarized in Table
2-3. See Chapter 4 for the operation of the individual instructions.

ACALL Absolute call ADD Add ADDC Add with carry

AIMP Absolute jump ANL Logical and CINE Compare & jump if not equal
CLR Clear CPL Complement DA Decimal adjust

DEC Decrement DV Divide DINZ Decrement & jump if not zero
INC Increment JB Jump if bit set JBC Jump & clear bit if bit set

JC Jump if carry set IMP Jump JINB Jump if bit not set

INC Jump if carry not set INZ Jump if accum. not zero JZ Jump if accumulator zero
LCALL Long call LIMP Long jump MOV Move

MOVC Move code MOVX Move external MUL Multiply

NOP No operation ORL Inclusive or POP Pop stack

PUSH Push stack RET Return RETI Return from interrupt

RL Rotate left RLC Rotate left thru carry RR Rotate right

RRC Rotate right thru carry SETB Set bit SIMP Short jump

SUBB Subtract with borrow SWAP Swap nibbles XCH Exchange bytes

XCHD Exchange digits XRL Exclusive or CALL Generic call

Table 2-3: 8051 Instructions and Mnemonics

When the Cross Assembler sees a generic CALL or JMP instruction, it will try to translate
the instruction into its most byte efficient form. The Cross Assembler will translate a CALL
into one of two instructions (ACALL or LCALL) and it will translate a generic JMP into one
of three instructions (SJMP, AJMP or LIMP). The choice of instructions is based on which
one is most byte efficient. The generic CALL or JMP instructions saves the programmer
the trouble of determining which form is best.

However, generic CALLs and JMPs do have their limitations. While the byte efficiency
algorithm works well for previously defined locations, when the target location of the CALL
or JMP is a forward location (a location later on in the program), the assembler has no way
of determining the best form of the instruction. In this case the Cross Assembler simply
puts in the long version (LCALL or LIMP) of the instruction, which may not be the most
byte efficient. NOTE that the generic CALLs and JMPs must not be used for the 751/752
device as LCALL and LIMP are not legal instructions for those devices. Instead use
ACALL and AJMP explicitly.

For instructions that have operands, the operands must be separated from the mnemonic
by at least one space or tab. For instructions that have multiple operands, each operand
must be separated from the others by a comma.

Two addressing modes require the operands to be preceded by special symbols to
designate the addressing mode. The AT sign (@) is used to designate the indirect
addressing mode. Itis used primarily with Register 0 and Register 1 (RO, R1), but is can
also be used with the DPTR in the MOVX and the Accumulator in MOVC and JMP
@A+DPTR instructions. The POUND sign (#) is used to designate an immediate
operand. It can be used to preface either a number or a symbol representing a number.

A third symbol used with the operands actually specifies an operation. The SLASH (/) is
used to specify that the contents of a particular bit address is to be complemented before
the instruction operation. This is used with the ANL and ORL bit instructions.

Only one assembly language instruction is allowed per line.
Comments are allowed on the same line as an instruction, but only after all operands have
been specified. The following are examples of instruction statements:

START: LIMP INIT
MOV @0, Serial _Port_Buffer
CINE RO , #TEN, | NC_TEN
ANL C, /| START_FLAG
CALL GET_BYTE
RET

2.7. Bit Addressing

The period (.) has special meaning to the Cross Assembler when used in a symbol. Itis
used to explicitly specify a bit in a bit-addressable symbol. For example, it you wanted to
specify the most significant bit in the Accumulator, you could write ACC.7, where ACC was
previously defined as the Accumulator address. The same bit can also be selected using
the physical address of the byte it's in. For example, the Accumulator's physical address is
224. The most significant bit of the Accumulator can be selected by specifying 224.7. If
the symbol ON was defined to be equal to the value 7, you could also specify the same bit
by either ACC.ON or 224.0N.

2.8. ASCII Literals

Printable characters from the ASCII character set can be used directly as an immediate
operand, or they can used to define symbols or store ASCII bytes in Program Memory.
Such use of the ASCII character set is called ASCI! literals. ASCII literals are identified by
the apostrophe (') delimiter. The apostrophe itself can be used as an ASCI! literal. In this
case, use two apostrophes in a row. Below are examples of using ASCII literals.

MOV A # m ;Load A with 06DH (ASCII m)
QUOTE EQU ' ; QUOTE defined as 27H (ASCI| single quote)
DB ' 8051 ; Store in Program Menory

2.9. Comments

Comments are user defined character strings that are not processed by the Cross
Assembler. A comment begins with a semicolon (;) and ends at the carriage return/line
feed pair that terminates the line. A comment can appear anywhere in a line, but it has to
be the last field. The following are examples of comment lines:

Begin initialization routine here

$TI TLE(8051 Program Vers. 1.0) ; Place version nunber here
TEN EQU 10 ; Const ant
Conmment can begin anywhere in a line
MOV A Serial Port Buffer ; Get character

2.10. The Location Counter

The Cross Assembler keeps a location counter for each of the five segments (code,
internal data, external data, indirect internal data and bit data). Each location counter is
initialized to zero and can be modified using Assembler Directives described in Chapter
5.

The dollar sign ($) can be used to specify the current value of the location counter of the
active segment. The following are examples of how this can be used:

JNB FLAG $;Junmp on self until flag is reset
CPYRGHT: DB ' Copyright, 1983

CPYRGHT_LENGTH
EQU $- CPYRGHT-1 ; Calcul ate |l ength of copyright nessage

2.11. Syntax Summary

Since the Cross Assembler essentially translates the source file on a line by line basis,
certain rules must be followed to ensure the translation process is done correctly. First of

2-6

all, since the Cross Assembler's line buffer is 256 characters deep, there must always be a
carriage return/line feed pair within the first 256 columns of the line.

A legal source file line must begin with either a control, a symbol, a label, an instruction
mnemonic, a directive, a comment or it can be null (just the carriage return/line feed pair).
Any other beginning to a line will be flagged as an error.

While a legal source file line must begin with one of the above items, the item doesn't have
to begin in the first column of the line. It only must be the first field of the line. Any number
(including zero) of spaces or tabs, up to the maximum line size, may precede it.

Comments can be placed anywhere, but they must be the last field in any line.

2.12. Numbers and Operators

The Cross Assembler accepts numbers in any one of four radices: binary, octal, decimal
and hexadecimal. To specify a number in a specific radix, the number must use the
correct digits for the particular radix and immediately following the number with its radix
designator. Decimal is the default radix and the use of its designator is optional. An
hexadecimal number that would begin with a letter digit must be preceded by a 0 (zero) to
distinguish it from a symbol. The internal representation of numbers is 16-bits, which limits
the maximum number possible. Table 2-4 summarizes the radices available.

RADIX DESIGNATOR LEGAL DIGITS MAXIMUM LEGAL
NUMBER
Binary B 0,1 11111112111111111B
Octal 0,Q 0,1,2,3,4,5,6,7 1777770
Decimal D, (default) 0,1,2,3,4,5,6,7,8,9 65535D
Hexadecimal H 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F OFFFFH

Table 2-4: Cross Assembler Radices

No spaces or tabs are allowed between the number and the radix designator. The letter
digits and radix designators can be in upper or lower case. The following examples list the
decimal number 2957 in each of the available radices:

101110001101B (Binary)
56150 or 5615Q (Octal)

2957 or 2957D (Decimal)
0B8DH, 0b8dh (Hexadecimal)

When using radices with explicit bit symbols, the radix designator follows the byte portion
of the address as shown in the following examples:

OEOH.7 Bit seven of hexadecimal address OEO
200Q.ON Bit ON of octal address 200

The Cross Assembler also allows assembly time evaluation of arithmetic expressions up
to thirty-two levels of embedded parentheses. All calculations use integer numbers and
are done in sixteen bit precision.

OPERATOR SYMBOL OPERATION

+ Addition, Unary positive

- Subtraction, Unary negation (2's complement)
* Multiplication

/ Integer division (no remainder)

MOD Modulus (remainder of integer division)
SHR Shift right

SHL Shift left

NOT Logical negation (1's complement)
AND Logical and

OR Inclusive or

XOR Exclusive or

LOW Low order 8-bits

HIGH High order 8-bits

EQ, = Relational equal

NE, <> Relational not equal

GT,> Relational greater than

GE, >= Relational greater than or equal

LT, < Relational less than

LE, <= Relational less than or equal

@) Parenthetical statement

Table 2-5: Assembly Time Operations

The relational operators test the specified values and return either a True or False. False
is represented by a zero value, True is represented by a non zero value (the True condition
actually returns a 16-bit value with every bit set; i.e., OFFFFH). The relational operators are
used primarily with the Conditional Assembly capability of the Cross Assembler.

Table 2-5 lists the operations available while Table 2-6 lists the operations precedence in
descending order. Operations with higher precedence are done first. Operations with
equal precedence are evaluated from left to right.

OPERATION

()

HIGH,LOW
*/,MOD,SHR,SHL
+,-

PRECEDENCE
HIGHEST

EQ,LT,GT,LE,GE,NE,:,<,>,<:'>:’<>

NOT
AND
OR,XOR

LOWEST

Table 2-6: Operators Precedence

The following are examples of all the available operations and their result:

HIGH(OAADDH)
LOW(OAADDH)
7*4

7/4

7 MOD 4

1000B SHR 2
1010B SHL 2
10+5

+72

25-17

-1

NOT 1
7EQ4,7=4
7LT4,7<4
7GT4,7>4
7LE4,7<=4
7GE4,7>=4
7NE4,7<>4
1101B AND 0101B
1101B OR 0101B
1101B XOR 0101B

2.13. Source File Listing

will return a result of 0OAAH
will return a result of ODDH
will return a result of 28

will return a result of 1

will return a result of 3

will return a result of 0010B
will return a result of 2101000B
will return a result of 15

will return a result of 72

will return a result of 8

will return aresult of 1111111111111111B
will return aresult of 1111111111111110B
will return a result of O

will return a result of O

will return a result of OFFFFH
will return a result of O

will return a result of OFFFFH
will return a result of OFFFFH
will return a result of 0101B
will return a result of 1101B
will return a result of 1000B

The source file listing displays the results of the Cross Assembler translation. Every line of
the listing includes a copy of the original source line as well as a line number and the Cross

Assembler translation.

For example, in translating the following line taken from the middle of a source file:

TRANS: MOV R7, #32 ; Set up pointer

the listing will print:

002F 7920 152 TRANS: MOV R1, #32 ; Set up pointer

The '002F' is the current value of the location counter in hexadecimal. The '7920' is the
translated instruction, also in hexadecimal. The '152' is the decimal line number of the
current assembly. After the line number is a copy of the source file line that was translated.

Another example of a line in the listing file is as follows:

015B 13 =1 267 +2 RRC A

Here we see two additional fields. The '=1' before the line number gives the current
nesting of include files. The '+2" after the line number gives the current macro nesting. This
line essentially says that this line comes from a second level nesting of a macro that is part
of an include file.

Another line format that is used in the listing is that of symbol definition. In this case the
location counter value and translated instruction fields described above are replaced with
the definition of the symbol. The following are examples of this:

00FF 67 MAX_NUM EQU 255
REG 68 COUNTER EQU R7

The '00FF' is the hexadecimal value of the symbol MAX_NUM. Again, '67'is the decimal
line number of the source file and the remainder of the first line is a copy of the source file.
In the second line above, the 'REG' shows that the symbol COUNTER was defined to be a
general purpose register.

Optionally, a listing can have a page header that includes the name of the file being
assembled, title of program, date and page number. The header and its fields are
controlled by specific Assembler Controls (see Chapter 6).

The default case is for a listing to be output as a file on the default drive with the same
name as the entered source file and an extension of .LST. For example, if the source file
name was PROGRAM.ASM, the listing file would be called PROGRAM.LST. Or if the
source file was called MODULEL1, the listing file would be stored as MODULE1.LST. The
default can be changed using the SNOPRINT and $PRINT() Assembler Controls (see
Chapter 6).

2.14. Object File

The 8051 Cross Assembler also creates a machine language object file. The format of the
object file is standard Intel Hexadecimal. This Hexadeciaml file can be used to either
program EPROMSs using standard PROM Programmers for prototyping, or used to pattern
masked ROMs for production.

The default case is for the object file to be output on the default drive with the same name
as the first source file and an extension of .HEX. For example, if the source file name was
PROGRAM.ASM, the object file would be called PROGRAM.HEX. Or if the source file
was called MODULEL, the object file would be stored as MODULE1.HEX. The default
can be changed using the $SNOOBJECT and $OBJECT() Assembler Controls (see
Chapter 6).

CHAPTER 3

RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS SYSTEMS
3.1. Cross Assembler Files

The floppy disk you receive with this manual is an 8 sector, single-sided, double density
disk. This distribution disk will contain the following files:

ASM51.EXE The Cross Assembler program itself
MOD152 Source file for the $MOD152 control
MOD154 Source file for the $MOD154 control
MOD252 Source file for the $MOD252 control
MOD44 Source file for the $MODA44 control

MOD451 Source file for the $MOD451 control
MODA452 Source file for the $MOD452 control
MOD51 Source file for the $SMOD51 control

MOD512 Source file for the $MOD512 control
MOD515 Source file for the $MOD515 control
MOD517 Source file for the $MOD517 control
MOD52 Source file for the $MOD52 control

MOD521 Source file for the $MOD521 control
MOD552 Source file for the $MOD552 control
MODG652 Source file for the $MOD652 control
MOD751 Source file for the $MOD751 control
MOD752 Source file for the $MOD752 control
MODS851 Source file for the $MOD851 control

There will also be one or more files with an extension of .ASM. These are sample
programs. Listings of these programs can be found in Appendix A.

DON'T USE THE DISTRIBUTION DISK. MAKE WORKING AND BACKUP COPIES
FROM THE DISTRIBUTION DISK AND THEN STORE THE DISTRIBUTION DISK IN A
SAFE PLACE.

3.2. Minimum System Requirements

With DOS 2.0 or later - 96K RAM
1 Floppy Disk Drive

3.3. Running the Cross Assembler

Once you've created an 8051 assembly language source text file in accordance with the
guidelines in Chapter 2, you are now ready to run the Cross Assembler. Make sure your
system is booted and the DOS prompt (A>) appears on the screen. Place the disk with
the 8051 Cross Assembler on it in the drive and simply type (in all the following examples,
the symbol <CR> is used to show where the ENTER key was hit):

ASM51<CR>

If the 8051 Cross Assembler disk was placed in a drive other than the default drive, the
drive name would have to be typed first. For example, if the A drive is the default drive, and
the 8051 Cross Assembler is in the B drive, you would then type:

B:ASM51<CR>

After loading the program from the disk, the program'’s name, its version number and
general copyright information will be displayed on the screen. The Cross Assembler then
asks for the source file name to begin the assembly process.

Source file drive and name [.LASM]:

At this point, if you have only one floppy disk drive and the 8051 Cross Assembler and
source files are on separate disks, remove the disk with the 8051 Cross Assembler on it
and replace it with your source file disk.

Next, enter the source file name. If no extension is given, the Cross Assembler will assume
an extension of .ASM. If no drive is given, the Cross Assembler will assume the default
drive. Since in every case where no drive is given, the Cross Assembler assumes the
default drive, it is generally a good practice to change the default drive to the drive with
your source files.

An alternative method for entering the source file is in the command line. In this case, after
typing in ASM51, type in a space and the source file name (again if no extension is given,
source file on the command line:

A>ASM51 B:CONTROL.A51<CR>

After the source file name has been accepted, the Cross Assembler will begin the

translation process. As it starts the first pass of its two pass process, it will print on the
screen:

First pass

At the completion of the first pass, and as it starts its second pass through the source file,
the Cross Assembler will display:

Second pass

When second pass is completed, the translation process is done and the Cross
Assembler will print the following message:

ASSEMBLY COMPLETE, XX ERRORS FOUND

XX is replaced with the actual number of errors that were found. Disk I/O may continue for
a while as the Cross Assembler appends the symbol table to the listing file.

3.4. Example Running the Cross Assembler

The following is an example of an actual run. The Cross Assembler will take the source file
SAMPLE.ASM from Drive A (default drive).

Again, the symbol <CR> is used to show where the ENTER key was hit.

A>ASMb1<CR>

8 051 CROSS ASSEMBLER

Version 1.2
(c) Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990

Met aLi nk Cor poration

Source file drive and nane [.ASM: sanpl e<CR>
First pass
Second pass

ASSEMBLY COWPLETE, 0 ERRORS FOUND

3.5. DOS Hints and Suggestions

If you are using DOS 2.0 or later, you may want to use the BREAK ON command before
you run the Cross Assembler. This will allow you to abort (Ctrl-Break) the Cross
Assembler at any time. Otherwise, you will only be able to abort the Cross Assembler after
it completes a pass through the source file. If you are assembling a large file, this could
cause you a several minute wait before the Cross Assembler aborts.

The reason for this it that the default condition for DOS to recognizes a Ctrl-Break is
when the program (in this case the Cross Assembler) does keyboard, screen or printer 1/O.
Unfortunately, the assembler does this very rarely (once each pass). By using the BREAK
ON command, DOS will recognize a Ctrl-Break for all /0, including disk I/O. Since the
Cross Assembler is constantly doing disk 1/0, with BREAK ON you can abort almost
immediately by hitting the Ctrl-Break keys.

So much for the good news. However, aborting a program can cause some undesirable
side-effects. Aborting a program while files are open causes DOS to drop some
information about the open files. This results in disk sectors being allocated when they are
actually free. Your total available disk storage shrinks. You should make the practice of
running CHKDSK with the /F switch periodically to recover these sectors.

The Cross Assembler run under DOS 2.0 or later supports redirection. You can specify the
redirection on the command line. Use the following form:

ASM51 <infile >outfile

“infile” and "oultfile" can be any legal file designator. The Cross Assembler will take its
input from the "infile" instead of the keyboard and will send its output to "outfile" instead of
the screen.

Note that redirection of input in ASM51 is redundant since the assembler is an absolute
assembler and has no command line options other than the file name argument.

Output redirection is useful for speeding up the assembly process. Because
assembly-time errors are directed to std_err in DOS, an error listing cannot be redirected
to afile

To make the .Ist file serve as an error-only file, use the Cross Assembler Controls $PRINT
(create a list file) SNOLIST (turn the listing off). Use the Cross Assembler Controls
$NOSYMBOLS to further compress the error-only listing resulting from the manipulation of
the list file controls. See Chapter 6 for more information. The errors will be listed in the .Ist
file, as usual.

If the control SNOPRINT (see Chapter 6) is active, all error messages are send to the
screen.

3.6. References

1. IBM Corp., Disk Operating System, Version 1.10, May 1982.
2. IBM Corp., Disk Operating System, Version 2.00, January 1983.

4.1. Notation

CHAPTER 4

8051 INSTRUCTION SET

Below is an explanation of the column headings and column contents of the 8051
Instruction Set Summary Table that follows in this chapter.

MNEMONIC

The MNEMONIC column contains the 8051 Instruction Set Mnemonic and a brief
description of the instruction's operation.

OPERATION

The OPERATION column describes the 8051 Instruction Set in unambiguous symbology.
Following are the definitions of the symbols used in this column.

<n:m>

V<< >0 X™~"' +

A
V

1
\Y

AC
CF
DOper
DPTR

Bits of a register inclusive. For example, PC<10:0> means
bits 0 through 10 inclusive of the PC. Bit O is always the least
significant bit

Binary addition

Binary 2s complement subtraction

Unsigned integer division

Unsigned integer multiplication

Binary complement (1s complement)

Logical And

Inclusive Or

Exclusive Or

Greater than

Not equal to

Equals

Is written into. For example, A + SOper - > A means the result
of the binary addition between A and the Source Operand is
written into A.

The 8-bit Accumulator Register.

The Auxiliary Carry Flag in the Program Status Word

The Carry Flag in the Program Status Word

The Destination Operand used in the instruction

16-bit Data Pointer

4-1

Intrupt Active Flag
Jump Relative to PC

Paddr
PC

PM(addr)
Remainder
SOper

SP
STACK

Internal Flag that holds off interrupts until the Flag is cleared.
A Jump that can range between -128 bytes and +127 bytes
from the PC value of the next instruction.

A 16-bit Program Memory address

The 8051 Program Counter. This 16-bit register points to the
byte in the Program Memory space that is fetched as part of
the instruction stream.

Byte in Program Memory space pointed to by addr.

Integer remainder of unsigned integer division

The Source Operand used in the instruction.

8-bit Stack Pointer

The Last In First Out data structure that is controlled by the
8-bit Stack Pointer (SP). Sixteen bit quantities are pushed on
the stack low byte first.

DEST ADDR MODE/SOURCE ADDR MODE

These two columns specify the Destination and Source Addressing Modes, respectively,
that are available for each instruction.

AB
Accumulator
Bit Direct
Carry Flag
Data Pointer
Direct
Indirect

Immediate

Prog Direct
Prog Indir

Register
Stack

The Accumulator-B Register pair.

Operand resides in the accumulator

Operand is the state of the bit specified by theBit Memory
address.

Operand is the state of the 1-bit Carry flag in the Program Status
Word (PSW).

Operand resides in the 16-bit Data Pointer Register

Operand is the contents of the specified 8-bit Internal Data
Memory address from 0 (00H) to 127 (7FH) or a Special Function
Register address.

Operand is the contents of the address contained in the register
specified.

Operand is the next sequential byte after the instruction in
Program Memory space

16-bit address in Program Memory Space.

Operand in Program Memory Space is the address contained in
the register specified.

Operand is the contents of the register specified.

Operand is on the top of the Stack.

ASSEMBLY LANGUAGE FORM

This column contains the correct format of the instructions that are recognized by the Cross
Assembler.

A Accumulator

AB Accumulator-B Register pair.

C Carry Flag

Baddr Bit Memory Direct Address.

Daddr Internal Data Memory or Special Function Register Direct Address.
data 8-bit constant data.

datal6 16-bit constant data.

DPTR 16-bit Data Pointer Register.

PC 16-bit Program Counter.

Paddr 16-bit Program Memory address

Ri Indirect Register. RO or R1 are the only indirect registers.

Roff 8-bit offset for Relative Jump.

Rn Implicit Register. Each register bank has 8 general purpose registers,

designated RO, R1, R2, R3, R4, R5, R6, R7.

HEX OPCODE

This column gives the machine language hexadecimal opcode for each 8051 instruction.

BYT

This column gives the number of bytes in each 8051 instruction.

CYC

This column gives the number of cycles of each 8051 instruction. The time value of a cycle
is defined as 12 divided by the oscillator frequency. For example, if running an 8051 family
component at 12 MHz, each cycle takes 1 microsecond.

PSW

This column identifies which condition code flags are affected by the operation of the
individual instructions. The condition code flags available on the 8051 are the Carry Flag,
CF, the Auxiliary Carry Flag, AC, and the Overflow Flag, OV.

It should be noted that the PSW is both byte and bit directly addressable. Should the PSW
be the operand of an instruction that modifies it, the condition codes could be changed
even if this column states that the instruction doesn't affect them.

Condition code is cleared

Condition code is set
Condition code is modified by instruction

Condition code is not affected by instruction

w | O

4.2. 8051 Instruction Set Summary

MNEMONIC OPERATION DEST SOURCE ASSEMBLY HEX B|C PSW
ADDR ADDR LANGUAGE OP- Y|Y
MODE MODE FORM CODE T|C|C A O
F C V
ACALL
2K in Page (11 bits) | PC + 2 -> STACK Prog Direct ACALL Paddr See 212 - - -
Absolute Call SP +2 ->SP note 1
Paddr<10:0> -> PC<10:0>
PC<15:11> -> PC<15:11>
ADD
Add Operand to A + SOper -> A Accumulator Immediate ADD A #data 24 211~ ~ -
Accumulator “ Direct ADD A,Daddr 25 211
“ Indirect ADD A,@Ri 26,27 1(1
“ Register ADD A,Rn 28-2F 1({1
ADDC
Add Operand with A+ SOper+ C->A Accumulator Immediate ADDC A #data 34 211~ ~ -
Carry to “ Direct ADDC A,Daddr 35 211
Accumulator “ Indirect ADDC A,@Ri 36,37 1(1
“ Register ADDC A,Rn 38-3F 111
AJMP See
2K in Page (11 bits) | Paddr<10:0> -> PC<10:0> Prog Direct AIJMP Paddr note 2 212 - - -
Absolute Jump PC<15:11> -> PC<15:11>
ANL
Logical AND of SOper » DOper -> DOper Direct Accumulator [ANL Daddr,A 52 211 - - -
Source Operand with “ Immediate ANL Daddr,#data 53 3| 2
Destination Operand Accumulator Immediate ANL A #data 54 211
“ Direct ANL A,Daddr 55 211
“ Indirect ANL A,@Ri 56,57 1(1
“ Register ANL A,Rn 58-5F 111
Logical AND of SOper ” CF -> CF Carry Flag Bit Direct ANL C,Baddr 82 212~ - -
Source Operand with
Carry Flag
Logical AND of ~SOper » CF -> CF Carry Flag Bit Direct ANL C,/Baddr BO 212~ - -
Source Operand
Complemented with
Carry Flag
CJINE
Compare Operands |Jump Relative to PC if Accumulator Immediate CJIJNE A, #data,Roff B4 312~ - -
and Jump Relative |DOper <> SOper “ Direct CJINE A,Daddr,Roff B5 312
if not Equal Indirect Immediate CIJNE @Ri,#data,Roff | B6,B7 3| 2| Seenote 3
Register “ CINE Rn,#data,Roff B8-Bf 312
CLR
Clear Accumulator 0->A Accumulator CLR A E4 11 1(- - -
Clear Carry Flag 0->CF Carry Flag CLR C C3 1110 - -
Clear Bit Operand 0 -> DOper Bit Direct CLR Baddr Cc2 21 1) - - -
CPL
Complement ~A->A Accumulator CPL A F4 111 - - -
Accumulator
Complement Carry | ~CF -> CF Carry Flag CPL C B3 111~ - -
Flag
Complement Bit ~DOper -> DOper Bit Direct CPL Baddr B2 211 - - -

Operand

MNEMONIC OPERATION DEST SOURCE ASSEMBLY HEX B|C PSW
ADDR ADDR LANGUAGE OP- YI|Y
MODE MODE FORM CODE | T|C|fC A O
F C V
DA
Decimal Adjust If (A<3:0> > 9) v AC Accumulator DA A D4 111~ - -
Accumulator for then A<3:0>+6 -> A<3:0>
Addition If (A<7:4>>9) v CF See note 4
then A<7:4>+6 -> A<7:4>
DEC
Decrement Operand | DOper - 1 -> DOper Accumulator DEC A 14 11 1 - - -
Direct DEC Daddr 15 211
Indirect DEC @Ri 16,17 1)1
Register DEC RN 18-1F 111
DIV 0 -~
Divide Accumulator |A/B->A AB DIV AB 84 1|4
by B Register Remainder -> B
See note 5
DJNZ
Decrement Operand | DOper - 1 -> Doper Direct DJNZ Daddr,Roff D5 31 2] - - -
and Jump Relative | If DOper <> 0 then Jump Register DJIJNZ Rn,Roff D8-DF | 2| 2
if Not Zero Relative to PC
INC
Increment Operand | DOper + 1 -> DOper Accumulator INC A 04 111 - - -
Direct INC Daddr 05 211
Indirect INC @Ri 06,07 1)1
Register INC RN 08-0F 111
Data Pointer INC DPTR A3 11 2
JB
Jump Relative if Bit | If DOper = 1 then Jump Bit Direct JB Baddr,Roff 20 3|1 2] - - -
Operand is Set Relative to PC
JBC
Jump Relative if Bit |If DOper = 1 then Bit Direct JBC Baddr,Roff 10 3|2~ - -~
Operand is Set and |0 -> DOper and Jump
Clear Bit Operand Relative to PC See note 6
JC
Jump Relative if If CF = 1 then Jump Carry Flag Jc Roff 40 212 - - -
Carry Flag is Set Relative to PC
JMP
Jump Indirect DPTR<15:0> + A<7:0> Prog Indir JMP @A+DPTR 73 1|1 2| - - -
-> PC<15:0>
JNB
Jump Relative if Bit | If DOper = 0 then Jump Bit Direct JNB Baddr,Roff 30 32 - - -
Operand is Clear Relative to PC
JNC
Jump Relative if If CF = 0 then Jump Carry Flag JNC Roff 50 212 - - -
Carry Flag is Clear | Relative to PC
JNZ
Jump Relative if the | If A<7:0> <> 0 then Accumulator INZ Roff 70 212 - - -
Accumulator is Not | Jump Relative to PC
Zero
Jz
Jump Relative if the | If A<7:0> = 0 then Accumulator Jz Roff 60 21 2] - - -

Accumulator is Zero

Jump Relative to PC

MNEMONIC OPERATION DEST SOURCE ASSEMBLY HEX B|C PSW
ADDR ADDR LANGUAGE OP- YI|Y
MODE MODE FORM CODE | T|[C|C A
F C
LCALL
Long (16 bits) Call PC + 3 -> STACK Prog Direct LCALL Paddr 12 312 - -
SP +2->SP
Paddr<15:0> -> PC<15:0>
LIMP
Long (16 bits) Paddr<15:0> -> PC<15:0> Prog Direct LIMP Paddr 02 32 - -
Absolute Jump
MoV
Move Source SOper -> DOper Accumulator Immediate MOV A #data 74 211 - -
Operand to “ Direct MoV A,Daddr E5 211
Destination Operand “ Indirect MOV A,@Ri E6,E7 111
“ Register MOV A,Rn E8-EF 111
Direct Accumulator [MOV Daddr,A F5 211
“ Immediate MoV Daddr,#data 75 3| 2
“ Direct MoV Daddr,Daddr 85 3| 2
“ Indirect MOV Daddr,@Ri 86,87 21 2
“ Register MOV Daddr,Rn 88-8F 2| 2
Indirect Accumulator MOV @RIi,A F6,F7 1|1
“ Immediate MOV @Ri,#data 76,77 211
“ Direct MoV @Ri,Daddr A6,A7 21 2
Register Accumulator MOV Rn,A F8-FF 111
“ Immediate MOV Rn,#data 78-7F 211
* Direct MOV Rn,Daddr A8-AF 2| 2
Data Pointer Immediate MOV DPTR, #datal6 90 3] 2
Move Carry Flag to | CF -> DOper Bit Direct Carry Flag MoV Baddr,C 92 212 - -
Bit Destination
Operand
Move Bit DOper -> CF Carry Flag Bit Direct MoV C,Baddr A2 211~ -
Destination Operand
to Carry Flag
MOvC
Move byte from PM(DPTR<15:0> + A<7:0>) Accumulator Prog Ind MOVC A @A+DPTR 93 112 - -
Program Memory to | -> A<7:0>
PM(PC<15:0> + A<7:0>) Accumulator Prog Ind MOVC A @A+PC 83 11 2(- -
-> A<7:0>
MOVX
Move byte from SOper -> A Accumulator Indirect MOVX A @RI E2,E3 1| 2 - -
External Data “ “ MOVX A @DPTR EO 1] 2
Memory to the
Accumulator
Move byte in the A -> DOper Indirect Accumulator MOVX @Ri,A F2,F3 1121 - -
Accumulator to “ “ MOVX @DPTR,A FO 1] 2
External Data
Memory
MUL
Multiply AXB->BA AB MUL AB A4 1{4(0 -
Accumulator by B (see note 7)
Register
NOP
No Operation NOP 00 1111 - -

MNEMONIC OPERATION DEST SOURCE ASSEMBLY HEX B|C PSW
ADDR ADDR LANGUAGE OP- YI|Y
MODE MODE FORM CODE | T|C|C A O
F C V
ORL
Logical Inclusive SOper v DOper -> DOper Direct Accumulator | ORL Daddr,A 42 211 - - -
OR of Source " Immediate ORL Daddr,#data 43 31 2
Operand with Accumulator Immediate ORL A #data 44 211
Destination Operand “ Direct ORL A,Daddr 45 211
“ Indirect ORL A,@Ri 46,47 111
“ Register ORL A,Rn 48-4F 1] 1
Logical Inclusive SOper v CF -> CF Carry Flag Bit Direct ORL C,Baddr 72 212~ - -
OR of Source
Operand with Carry
Flag
Logical Inclusive ~SOper v CF -> CF Carry Flag Bit Direct ORL C,/Baddr A0 212~ - -
OR of Source
Operand
Complemented with
Carry Flag
POP
Pop Stack and STACK -> Doper Direct Stack POP Daddr DO 21 2] - - -
Place in Destination | SP -1 -> SP
Operand
PUSH
Push Source SP+1->SP Stack Direct PUSH Daddr co 21 2] - - -
Operand onto Stack | SOper -> STACK
RET
Return from STACK -> PC<15:8> RET 22 11 2] - - -
Subroutine SP-1->SP
STACK -> PC<7:0>
SP-1->SP
RETI
Return from STACK -> PC<15:8> RETI 32 11 2] - - -
Interrupt Routine SP-1->SP
STACK -> PC<7:0>
SP-1->SP
0 -> Intrupt Active Flag
RL
Rotate Accumulator | A<6:0> -> A<7:1> Accumulator RL A 23 1f1f- - -
Left One Bit A<7> -> A<0>
RLC
Rotate Accumulator | A<6:0> -> A<7:1> Accumulator RLC A 33 111~ - -
Left One Bit Thru CF -> A<0>
the Carry Flag A<7> -> CF
RR
Rotate Accumulator | A<7:1> -> A<6:0> Accumulator RR A 03 1|11 - - -
Right One Bit A<0> -> A<7>
RRC
Rotate Accumulator | A<7:1> -> A<6:0> Accumulator RRC A 13 1|1 1(~ - -
Right One Bit Thru CF > A<7>
the Carry Flag A<0> -> CF
SETB
Set Bit Operand 1->CF Carry Flag SETB C D3 111 - -
1 -> DOper Bit Direct SETB Baddr D2 21 2] - - -
SIMP
Short (8 bits) Jump Relative to PC SIMP Roff 80 21 2] - - -

Relative Jump

MNEMONIC OPERATION DEST SOURCE ASSEMBLY HEX B|C PSW
ADDR ADDR LANGUAGE OP- YI|Y
MODE MODE FORM CODE |T|C|C A O
F C V
SUBB
Subtract Operand A - SOper - CF -> A Accumulator Immediate SUBB A #data 94 211 ~ -~
with Borrow from the “ Direct SUBB A,Daddr 95 211
Accumulator Indirect SUBB A,@Ri 96,97 1|1
Register SUBB A,Rn 98-9F 1(1
SWAP
Swap Nibbles within | A<7:4> -> A<3:0> Accumulator SWAP A c4 1] 1
the Accumulator A<3:0> -> A<7:4>
XCH
Exchange bytes of SOper<7:0> -> A<7:0> Accumulator Direct XCH A,Daddr C5 211
the Accumulator and | A<7:0> -> SOper<7:0> “ Indirect XCH A, @RI cecr7r| 1|1
the Source Operand Register XCH A,Rn C8CF | 1|1
XCHD
Exchange the Least | SOper<3:0> -> A<3:0> Accumulator Indirect XCHD A @Ri D6,D7 | 1| 1
Significant Nibble of | A<3:0> -> SOper<3:0>
the Accumulator and
the Source Operand
XRL
Logical Exclusive SOper v DOper -> DOper Direct Accumulator | XRL Daddr,A 62 211
OR of Source “ Immediate XRL Daddr,#data 63 3] 2
Operand with Accumulator Immediate XRL A #data 64 211
Destination Operand “ Direct XRL A,Daddr 65 211
Indirect XRL A,@Ri 66,67 1(1
Register XRL A,Rn 68-6F 1] 1
4.3. Notes
1 There are 8 possible opcodes. Starting with 11H as the opcode base, the final

opcode is formed by placing bits 8, 9 and 10 of the target address in bits 5, 6 and 7

of the opcode. The 8 possible opcodes in hexadecimal are then: 11, 31, 51, 71,
91, B1, D1, F1.

2 There are 8 possible opcodes. Starting with 01H as the opcode base, the final

opcode is formed by placing bits 8, 9 and 10 of the target address in bits 5, 6 and 7
of the opcode. The 8 possible opcodes in hexadecimal are then: 01, 21, 41, 61, 81,
Al, C1, E1.

The Carry Flag is set if the Destination Operand is less than the Source Operand.
Otherwise the Carry Flag is cleared.

The Carry Flag is set if the BCD result in the Accumulator is greater than decimal
99.

The Overflow Flag is set if the B Register contains zero (flags a divide by zero
operation). Otherwise the Overflow Flag is cleared.

6 If any of the condition code flags are specified as the operand of this instruction,
they will be reset by the instruction if they were originally set.

7 The high byte of the 16-bit product is placed in the B Register, the low byte in
Accumulator.
4.4. References

1. Intel Corp., Microcontroller Handbook, 1984.

CHAPTER 5

8051 CROSS ASSEMBLER DIRECTIVES
5.1. Introduction

The 8051 Cross Assembler Directives are used to define symbols, reserve memory
space, store values in program memory, select various memory spaces, set the current
segment's location counter and identify the end of the source file.

Only one directive per line is allowed, however comments may be included. The remaining
part of this chapter details the function of each directive.

5.2. Symbol Definition Directives
EQU Directive

The EQUate directive is used to assign a value to a symbol. It can also be used to specify
user defined names for the implicit operand symbols predefined for the Accumulator (i.e.,
A) and the eight General Purpose Registers (i.e., RO thru R7).

The format for the EQU directive is: symbol, followed by one or more spaces or tabs,
followed by EQU, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, previously defined symbol (no forward references allowed) or one of
the allowed implicit operand symbols (e.g., A, RO, R1, R2, R3, R4, R5, R6, R7), followed
by an optional comment.

Below are examples of using the EQU Directive:

TEN EQU 10 ; Symbol equated to a nunber
COUNTER EQU R7 ; User defined synmbol for the inplicit
;operand symbol R7. COUNTER can now
; be used wherever it is legal to use
; R7. For exanple the instruction
; INC R7 could now be witten | NC COUNTER.

ALSO TEN EQU TEN ; Symbol equated to a previously defined
; symbol .

FI VE EQU TEN 2 ; Symbol equated to an arithnetic exp.

A REG EQU A ; User defined synmbol for the inplicit
; operand symbol A.

ASCI I _D EQU 'D ; Symbol equated to an ASCII| literal

SET Directive

Similar to the EQU directive, the SET directive is used to assign a value or implicit
operand to a user defined symbol. The difference however, is that with the EQU directive,
a symbol can only be defined once. Any attempt to define the symbol again will cause the
Cross Assembler to flag it as an error. On the other hand, with the SET directive, symbols
are redefineable. There is no limit to the number of times a symbol can be redefined with
the SET directive.

The format for the SET directive is: symbol, followed by one or more spaces or tabs,
followed by SET, followed by one or more spaces or tabs, followed by a number,

arithmetic expression, previously defined symbol (no forward references allowed) or one of
the allowed implicit operand symbols (e.g., A, RO, R1, R2, R3, R4, R5, R6, R7), followed
by an optional comment.

Below are examples of using the SET Directive:

PO NTER SET RO ; Synmbol equated to register 0O
PO NTER SET R1 ; PO NTER redefined to register 1
COUNTER SET 1 ; Synmbol initialized to 1

COUNTER SET COUNTER+1 ;An i ncrenmenting synbol

BIT Directive

The BIT Directive assigns an internal bit memory direct address to the symbol. If the
numeric value of the address is between 0 and 127 decimal, it is a bit address mapped in
the Internal Memory Space. If the numeric value of the address is between 128 and 255, it
is an address of a bit located in one of the Special Function Registers. Addresses greater
than 255 are illegal and will be flagged as an error.

The format for the BIT Directive is: symbol, followed by one or more spaces or tabs,
followed by BIT, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously defined symbol (no forward references allowed), followed by an
optional comment.

Below are examples of using the BIT Directive:

CF BIT 0D7H ; The single bit Carry Flag in PSW
OFF_FLAG BIT 6 ; Menory address of single bit flag
ON_FLAG BIT OFF_FLAG+1 ; Next bit is another flag

CODE Directive

The CODE Directive assigns an address located in the Program Memory Space to the
symbol. The numeric value of the address cannot exceed 65535.

The format for the CODE Directive is: symbol, followed by one or more spaces or tabs,
followed by CODE, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the CODE Directive:

RESET CODE 0
EXTI O CODE RESET + (1024/16)
DATA Directive

The DATA Directive assigns a directly addressable internal memory address to the
symbol. If the numeric value of the address is between 0 and 127 decimal, it is an address
of an Internal Data Memory location. If the numeric value of the address is between 128
and 255, it is an address of a Special Function Register. Addresses greater than 255 are
illegal and will be flagged as an error.

The format for the DATA Directive is: symbol, followed by one or more spaces or tabs,
followed by DATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the DATA Directive:

PSW DATA ODOH ; Defining the Program Status address
BUFFER DATA 32 ;I nternal Data Menory address
FREE_SPAC DATA BUFFER+16 ; Arithnmetic expression.

IDATA Directive

The IDATA Directive assigns an indirectly addressable internal data memory address to
the symbol. The numeric value of the address can be between 0 and 255 decimal.
Addresses greater than 255 are illegal and will be flagged as an error.

The format for the IDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by IDATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the IDATA Directive:

TOKEN | DATA 60
BYTE_CNT | DATA TOKEN + 1
ADDR | DATA TOKEN + 2
XDATA Directive

The XDATA Directive assigns an address located in the External Data Memory Space to
the symbol. The numeric value of the address cannot exceed 65535.

The format for the XDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by XDATA, followed by one or more spaces or tabs, followed by a number,
arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below are examples of using the XDATA Directive:

USER_BASE XDATA 2048
HOST_BASE XDATA USER_BASE + 1000H

5.3. Segment Selection Directives

There are five Segment Selection Directives: CSEG, BSEG, DSEG, ISEG, XSEG, one for
each of the five memory spaces in the 8051 architecture. The CSEG Directive is used to
select the Program Memory Space. The BSEG Directive is used to select the Bit Memory
Space. The DSEG Directive is used to select the directly addressable Internal Data
Memory Space. The ISEG is used to select the indirectly addressable Internal Data
Memory Space. The XSEG is used to select the External Data Memory Space.

Each segment has its own location counter that is reset to zero during the Cross
Assembler program initialization. The contents of the location counter can be overridden
by using the optional AT after selecting the segment.

The Program Memory Space, or CSEG, is the default segment and is selected when the
Cross Assembler is run.

The format of the Segment Selection Directives are: zero or more spaces or tabs, followed
by the Segment Selection Directive, followed by one or more spaces or tabs, followed by
the optional segment location counter override AT command and value, followed by an
optional comment.

The value of the AT command can be a number, arithmetic expression or previously
defined symbol (forward references are not allowed). Care should be taken to ensure that
the location counter does not advance beyond the limit of the selected segment.

Below are examples of the Segment Selection Directives:

DSEG ; Sel ect direct data segnent using
;current |ocation counter val ue.
BSEG AT 32 ; Select bit data segment forcing

;location counter to 32 decimal .
XSEG AT (USER BASE * 5) MOD 16 ; Arithmetic expressions can be
;used to specify location.

5.4. Memory Reservation and Storage Directives
DS Directive

The DS Directive is used to reserve space in the currently selected segment in byte units.
It can only be used when ISEG, DSEG or XSEG are the currently active segments. The
location counter of the segment is advanced by the value of the directive. Care should be
taken to ensure that the location counter does not advance beyond the limit of the segment.

The format for the DS Directive is: optional label, followed by one or more spaces or tabs,
followed by DS, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously defined symbol (no forward references allowed), followed by an

optional comment.

Below is an example of using the DS Directive in the internal Data Segment. If, for
example, the Data Segment location counter contained 48 decimal before the example
below, it would contain 104 decimal after processing the example.

DSEG ; Sel ect the data segment

DS 32 ; Label is optional
SP_BUFFER: DS 16 ; Reserve a buffer for the serial port
| O_BUFFER: DS 8 ; Reserve a buffer for the 1/0

DBIT Directive

The DBIT Directive is used to reserve bits within the BIT segment. It can only be used
when BSEG is the active segment. The location counter of the segment is advanced by the
value of the directive. Care should be taken to ensure that the location counter does not
advance beyond the limit of the segment.

The format for the DBIT Directive is: optional label, followed by one or more spaces or
tabs, followed by DBIT, followed by one or more spaces or tabs, followed by a number,

5-5

arithmetic expression, or previously defined symbol (no forward references allowed),
followed by an optional comment.

Below is an example of using the DBIT Directive:

BSEG ; Select the bit segnent
DBI T 16 ; Label is optional
I O_MAP: DBI T 32 ; Reserve a bit buffer for 1/0

DB Directive

The DB Directive is used to store byte constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

The format for the DB Directive is: optional label, followed by one or more spaces or tabs,
followed by DB, followed by one or more spaces or tabs, followed by the byte constants
that are separated by commas, followed by an optional comment.

The byte constants can be numbers, arithmetic expressions, symbol values or ASCII
literals. ASCII literals have to be delimited by apostrophes ('), but they can be strung
together up to the length of the line.

Below are examples of using the DB Directive. If an optional label is used, its value will
point to the first byte constant listed.

COPYRGHT _MSG

DB "(c) Copyright, 1984 ;ASCI I Literal
RUNTI ME_CONSTANTS:

DB 127, 13, 54, 0, 99 ; Tabl e of constants

DB 17, 32, 239, 163, 49 ; Label is optional
M XED: DB 2*8,' MPG , 2*16, ' abc’ ;Can mx literals & no.
DW Directive

The DW Directive is used to store word constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

The format for the DW Directive is: optional label, followed by one or more spaces or tabs,
followed by DW, followed by one or more spaces or tabs, followed by the word constants
that are separated by commas, followed by an optional comment.

The word constants can be numbers, arithmetic expressions, symbol values or ASCII

literals. ASCII literals must be delimited by apostrophes ('), but unlike the DB Directive,
only a maximum of two ASCII characters can be strung together. The first character is

5-6

placed in the high byte of the word and the second character is placed in the low byte. If
only one character is enclosed by the apostrophes, a zero will be placed in the high byte of
the word.

Below are examples of using the DW Directive. If an optional label is used, its value will
point to the high byte of the first word constant listed.

JUMP_TABLE: DW RESET, START, END ; Tabl e of addresses
DW TEST, TRUE, FALSE ; Optional | abel
RADI X: DW 'H ,1000H ; 1st byte contains 0

;2nd byte contains 48H (H)
;3rd byte contains 10H
;4th byte contains 0

5.5. Miscellaneous Directives

ORG Directive

The ORG Directive is used to specify a value for the currently active segment's location
counter. It cannot be used to select segments like the directives above. It can only be
used within a segment when the location counter needs to be changed. Care should be
taken to ensure that the location counter does not advance beyond the limit of the selected
segment.

The format of the ORG Directive is: zero or more spaces or tabs, followed by ORG,
followed by one or more spaces or tabs, followed by a number, arithmetic expression, or
previously defined symbol (no forward references are allowed), followed by an optional
comment.

Below are examples of the ORG directive.

ORG 1000H ; Location counter set at 4096 deci mal
ORG RESET ; Previously defined synbol
ORG BASE + MODULE_NO ; Arithmetic expression

USING DIRECTIVE

The USING Directive is used to specify which of the four General Purpose Register banks
is used in the code that follows the directive. It allows the use of the predefined register
symbols ARO thru AR7 instead of the register's direct addresses. It should be noted that
the actual register bank switching must still be done in the code. This directive simplifies
the direct addressing of a specified register bank.

The format of the USING Directive is: zero or more spaces or tabs, followed by USING,
followed by one or more spaces or tabs, followed by a number, arithmetic expression, or
previously defined symbol (no forward references are allowed), followed by an optional
comment.

The number, arithmetic expression, or previously defined symbol must result in a number
between 0 and 3 in order to specify one of the four register banks in the 8051.

The following table maps the specified value in the USING directive with the direct
addresses of the predefined symbols.

Predefined USING Value
Symbol 0 1 2 3
ARO 0 8 16 24
AR1 1 9 17 25
AR2 2 10 18 26
AR3 3 11 19 27
AR4 4 12 20 28
AR5 5 13 21 29
ARG 6 14 22 30
AR7 7 15 23 31

Below are examples of the USING Directive:

USI NG 0 ; Sel ect addresses for Bank O
USI NG 1+1+1 ;Arithmetic expressions

END Directive

The END Directive is used to signal the end of the source program to the Cross
Assembler. Every source program must have one and only one END Directive. A missing
END Directive, as well as text beyond the occurrence of the END Directive are not allowed
and will be flagged as errors.

The format of the END Directive is: zero or more spaces or tabs, followed by END,
followed by an optional comment. All text must appear in the source program before the
occurrence of the END Directive.

Below is an example of the END Directive:

END :This is the End

5.6. Conditional Assembly Directives
IF, ELSE and ENDIF Directive

The IF, ELSE and ENDIF directives are used to define conditional assembly blocks. A
conditional assembly block begins with an IF statement and must end with the ENDIF
directive. In between the IF statement and ENDIF directive can be any number of
assembly language statements, including directives, controls, instructions, the ELSE
directive and nested IF-ENDIF conditional assembly blocks.

The IF statement starts with the keyword IF, followed by one or more spaces or tabs,
followed by a number, arithmetic expression, or previously defined symbol (no forward
references are allowed), followed by an optional comment. The number, arithmetic
expression or symbol is evaluated and if found to be TRUE (non-zero), the assembly
language statements are translated up to the next ELSE or ENDIF directives. If the IF
statement was evaluated FALSE (zero), the assembly language statements are
considered null up to the next ELSE or ENDIF directives.

If an optional ELSE appears in the conditional assembly block, the assembly language
statements following are handled oppositely from the assembly language statements
following the IF statement. In other words, if the IF statement was evaluated TRUE, the
statements following it are translated, while the statements following the ELSE will be
handled as if they were null. On the other hand, if the IF statement was evaluated FALSE,
only the assembly language statements following the ELSE directive would be translated.

IF-ELSE-ENDIF conditional assembly blocks can be nested up to 255 levels deep. The
following are some examples of conditional assembly blocks. This first conditional
assembly block simply checks the symbol DEBUG. If DEBUG is non-zero, the MOV and
CALL instructions will be translated by the Cross Assembler.

| F (DEBUG)
MOV A #25
CALL OUTPUT
ENDI F

The next example used the optional ELSE directive. If SMALL_MODEL is zero, only the
statements following the ELSE directive will be translated.

| F (SMALL_MODEL)
MOV RO, #BUFFER
MOV A, @O

ELSE
MOV RO, #EXT_BUFFER
MOVX A, @O

ENDI F

The last example shows nested conditional assembly blocks. Conditional assembly blocks
can be nested up to 255 levels deep. Every level of nesting must have balanced IF-ENDIF
statements.

| F (VERSI ON > 10) \
CALL DOUBLE_PRECI SI ON |
CALL UPDATE_STATUS 3 |
| F (DEBUG) \ |
I
I

CALL DUMP_REQ STERS > Nested
ENDI F | Bl ock
ELSE > Quter Block

CALL SI NGLE_PRECI SI ON |
CALL UPDATE_STATUS 3 |

| F (DEBUG) \ |
I

I

CALL DUWP_REG STERS > Nested
ENDI F |l Bl ock
ENDI F /

CHAPTER 6

8051 CROSS ASSEMBLER CONTROLS

6.1. Introduction

Assembler controls are used to control where the Cross Assembler gets its input source
file, where it stores the object file, how it formats and where it outputs the listing.

All Assembler controls are prefaced with a dollar sign, ($). No spaces or tabs are allowed
between the dollar sign and the body of the control. Also, only one control per line is
permitted. Comments are allowed on the same line as an Assembler control.

There are two types of controls, Primary controls and General controls. Primary controls
can be invoked only once per assembly. If an attempt is made to change a previously
invoked primary control, the attempt is ignored. For example, if SNOPRINT is put on line 1
of the source file and $PRINT is put on line 2, the $PRINT control will be ignored and the
listing will not be output. General controls can be invoked any number of times in a source
program.

There are two legal forms for each Assembler control, the full form and the abbreviated
form. The two forms can be used interchangeable in the source program.

Below is a description of each Assembler control. Assembler controls with common
functionality are grouped together.

6.2. Assembler Control Descriptions

$DATE(date)
Places the ASCII string enclosed by parenthesis in the date field of the page header. The

ASCII string can be from 0 to 9 characters long.
CONTROL: $DATE(date)

ABBREV: $DA(date)

TYPE: Primary

DEFAULT: No date in page header

EXAMPLES: $DATE(1-JUL-84)
$DA(7/22/84)

$DEBUG(file)

$NODEBUG

These controls determine whether or not a MetaLink Absolute Object Module format file is
created. The MetaLink Absolute Object Module format file is used in conjunction with
MetaLink's MetalCE series of in-circuit-emulators. Among other advantages, it provides
powerful symbolic debug capability in the emulator debug environment. SNODEBUG
specifies that a MetaLink Absolute Object Module file will not be created. $DEBUG
specifies that a MetaLink Absolute Object Module file will be created. The $DEBUG
control allows any legal file name to be specified as the MetaLink Absolute Object Module
filename. If no filename is specified, a default name is used. The default name used for
the file is the source file name root with a .DBG extension. If the $SDEBUG control is used,
both a MetaLink Absolute Object Module file and a standard Intel Hexadecimal format
object file can be generated at the same time. Refer to the $OBJECT control description

later in this chapter for information on controlling the Hexadecimal format object file output.
CONTROL: $DEBUG(file)

$NODEBUG
ABBREV: $DB(file)
$NODB
DEFAULT: $NODEBUG
TYPE: Primary
EXAMPLES: $DB(A:NEWNAME.ICE)
$DEBUG
$NOOBJECT

$EJECT
Places a form feed (ASCII OCH) in the listing output. The $SNOPAGING control will override
this control.

CONTROL: $EJECT

ABBREV: $EJ

DEFAULT: No form feeds in listing output

TYPE: General

EXAMPLES: $EJECT

$EJ

SINCLUDE(file)
Inserts a file in source program as part of the input source program. The file field in this
control can be any legal file designator. No extension is assumed, so the whole file name
must be specified. Any number of files can be included in a source program. Includes can
be nested up to 8 level deep. It is important to note that this control inserts files, it does not
chain or concatenate files.

CONTROL: $INCLUDE(file)

ABBREV: $IC(file)

DEFAULT: Nofile included in source program

6-2

TYPE: General

EXAMPLES: $INCLUDE(B:COMMON.EQU
$IC(TABLES.ASM) ;Uses default drive

SLIST
$NOLIST
These controls determine whether or not the source program listing is output or not. $LIST
will allow the source program listing to be output. $NOLIST stops the source program
listing from being output. The $SNOPRINT control overrides the $LIST control.

CONTROL: $LIST

$NOLIST
ABBREV: $LI
$NOLI
DEFAULT: S$LIST
TYPE: General
EXAMPLES: $NOLIST :This will cause the included
$INCLUDE(COMMON.TBL) ;file not to be listed
$LI ;Listing continues

$MOD51

$MOD52

$MOD44

$MOD515

$MOD512

$MOD517

$MOD152

$MOD451

$MOD452

$MOD751

$MOD752

$MOD154

$MOD252

$MOD521

$MOD552

$MOD652

$MOD851

$NOMOD

Recognizes predefined special function register symbols in the source program. This
saves the user from having to define all the registers in the source program. Appendix B
lists the symbols that are defined by these controls. $SNOMOD disables the recognizing
function. These controls access a files of the same name that are included with the
MetaLink 8051 CROSS ASSEMBLER distribution diskette. When a $MOD control is
used in a source program, it is important that the $MOD file be available to the Cross

6-3

Assembler. The Cross Assembler first looks for the $MOD file on the default drive, if it isn't
found there, the Cross Assembler looks for it on the A: drive. The components supported
by each switch are:

$MOD51: 8051, 8751, 8031, 80C51, 80C31, 87C51, 9761, 8053
$MOD52: 8052, 8032, 8752
$MOD44: 8044, 8344, 8744
$MOD515: 80515, 80535, 80C515, 80C535
$MOD512: 80512, 80532
$MOD517: 80C517, 80C537
$MOD152: 80C152,83C152,80C157
$MOD451: 80C451. 83C451, 87C451
$MOD452: 80C452, 83C452, 87C452
$MOD752: 83C752,87C752
$MOD751: 83C751,87C751
$MOD154: 83C514,80C154, 85C154
$MOD252: 80C252, 83C252, 87C252, 80C51FA, 83C51FA, 87C51FA,

83C51FB, 87C51FB
$MOD521: 80C521, 80C321, 87C521, 80C541, 87C541
$MOD552: 80C552, 83C552, 87C552
$MOD652: 80C652, 83C652
$MOD851: 80C851, 83C851
CONTROL: $MOD51

$MOD52

$MOD44

$MOD152

$MOD515

$MOD512

$MOD451

$MOD452

$MOD751

$MOD752

$MOD154

$MOD252

$MOD521

$MOD552

$MOD652

$MOD517

$MOD851

$NOMOD
ABBREV:
DEFAULT: $NOMOD
TYPE: Primary
EXAMPLES: $MOD51

$MOD52

$MOD44

$MOD515
$MOD512
$MOD152
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521
$MOD552
$MOD652
$MOD517
$MOD851
$NOMOD

$OBJIECT(file)
$NOOBJECT
These controls determine whether or not a standard Intel Hexadecimal format object file is
created. SNOOBJECT specifies that an object file will not be created. SOBJECT
specifies that an object file will be created. If other than the default name is to be used for
the object file, the SOBJECT control allows any legal file name to be specified as the
object filename. The default name used for the object file is the source file name root with
a .HEX extension.

CONTROL: $OBJECT(file)

$NOOBJECT
ABBREV: $0J(file)
$NOOJ
DEFAULT: $OBJECT(source.HEX)
TYPE: Primary
EXAMPLES: $OJ(A:NEWNAME.OBJ)
$NOOBJECT
$PAGING
$NOPAGING

These controls specify whether or not the output listing will be broken into pages or will be
output as one continuous listing. When the SNOPAGING control is used, the $EJECT and
$PAGELENGTH controls are ignored. With the $PAGING control, a form feed and header
line is inserted into the output listing whenever an $EJECT control is met, or whenever the
number of lines output on the current page exceeds the value specified by the
$PAGELENGTH control. The header line contains source file name, title (if $TITLE control
was used), date (if SDATE control was used) and page number.

6-5

CONTROL: $PAGING

$NOPAGING
ABBREV: $PI

$NOPI
DEFAULT: $PAGING
TYPE: Primary
EXAMPLES: $PAGING

$NOPI

$PAGELENGTH(n)

Sets the maximum number of lines, (n), on a page of the output listing. If the maximum is
exceeded, a form feed and page header is inserted in the output listing. This control
allows the number of lines per page to be set anywhere between 10 and 255. If the
number of lines specified is less than 10, pagelength will be set to 10. If the number of
lines specified is greater than 255, pagelength will be set to 255.

The $NOPAGING control will override this control.
CONTROL: $PAGELENGTH(n)
ABBREV: $PL(n)

DEFAULT: $PAGELENGTH(60)

TYPE: Primary
EXAMPLES: $PAGELENGTH(48)
$PL(58)
$PAGEWIDTH(n)

Sets the maximum number of characters, (n), on a line of the output listing. This control
allows the number of characters per line to be set anywhere between 72 and 132. If the
number specified is less than 72, the pagewidth is set at 72. If the number specified is
greater than 132, the pagewidth is set at 132. If the pagewidth is specified between 72
and 100 and the line being output exceeds the pagewidth specification, the line is
truncated at the specified pagewidth and a carriage return/line feed pair is inserted in the
listing. If the pagewidth is specified to be greater than 100 and the line being output
exceed the pagewidth specification, a carriage return/line feed pair is inserted at the
specified pagewidth and the line will continue to be listed on the next line beginning at
column 80.

CONTROL: $PAGEWIDTH(n)

ABBREV: $PW(n)

DEFAULT $PAGEWIDTH(72)

TYPE: Primary
EXAMPLES: $PAGEWIDTH(132)
$PW(80)

$PRINT(file)

$NOPRINT

These controls determine whether or not a listing file is created. SNOPRINT specifies that
a listing file will not be created. $PRINT specifies that an listing file will be created. If other
than the default name is to be used for the listing file, the $PRINT control allows any legal
file name to be specified as the listing filename. The default name used for the listing file is
the source file name root with a .LST extension.

CONTROL: $PRINT(file)

$NOPRINT
ABBREV: $PR
$NOPR
DEFAULT: $PRINT(source.LST)
TYPE: Primary
EXAMPLES: $PRINT(A:CONTROL.OUT)
$NOPR
$SYMBOLS
$NOSYMBOLS

Selects whether or not the symbol table is appended to the listing output. $SYMBOLS
causes the symbol table to be sorted alphabetically by symbol, formatted and output to the
listing file. Along with the symbol name, its value and type are output. Values are output in
hexadecimal. Types include NUMB (number), ADDR (address), REG (register symbol)
and ACC (accumulator symbol). If a symbol was of type ADDR, it segment is also output
as either C (code), D (data) or X (external). Other information listed with the symbols is
NOT USED (symbol defined but never referenced), UNDEFINED (symbol referenced but
never defined) and REDEFINEABLE (symbol defined using the SET directive). The type
and value listed for a REDEFINABLE symbol is that of its last definition in the source
program. $SNOSYMBOLS does not output the symbol table.

CONTROL: $SYMBOLS

$NOSYMBOLS
ABBREV: $SB

$NOSB
DEFAULT: $SYMBOLS
TYPE: Primary
EXAMPLES: $SB

$NOSYMBOLS

STITLE(string)

Places the ASCII string enclosed by the parenthesis in the title field of the page header.
The ASCII string can be from 0 to 64 characters long. If the string is greater than 64
characters or if the width of the page will not support such a long title, the title will be
truncated. If parentheses are part of the string, they must be balanced.

6-7

CONTROL: $TITLE(string)

ABBREV: $TT(string)

DEFAULT: No title in page header

TYPE: Primary

EXAMPLES: $TITLE(SAMPLE PROGRAM V1.2)
$TT(METALINK (TM) CROSS ASSEMBLER)

CHAPTER 7

8051 CROSS ASSEMBLER MACRO PROCESSOR

7.1. Introduction

Macros are useful for code that is used repetitively throughout the program. It saves the
programmer the time and tedium of having to specify the code every time it is used. The
code is written only once in the macro definition and it can be used anywhere in the source
program any number of times by simply using the macro name.

Sometimes there is confusion between macros and subroutines. Subroutines are common
routines that are written once by the programmer and then accessed by CALLIng them.
Subroutines are usually used for longer and more complex routines where the call/return
overhead can be tolerated. Macros are commonly used for simpler routines or where the
speed of in-line code is required.

7.2. Macro Definition

Before a macro can be used, it first must be defined. The macro definition specifies a
template that is inserted into the source program whenever the macro name is
encountered. Macro definitions can not be nested, but once a macro is defined, it can be
used in other macro definitions. Macros used this way can be nested up to nine levels
deep.

The macro definition has three parts to it: 1) the macro header which specifies the macro
name and its parameter list, 2) the macro body which is the part that is actually inserted
into the source program, and 3) the macro terminator.

The macro header has the following form:

name MACRO <paraneter |ist>

The name field contains a unique symbol that it used to identify the macro. Whenever that
symbol is encountered in the source program, the Cross Assembler will automatically
insert the macro body in the source program at that point. The name must be a unique
symbol that follows all the rules of symbol formation as outlined in Chapter 2.

The MACRO field of the macro header contains the keyword MACRO. This is used to
notify the Cross Assembler that this is the beginning of a macro definition.

The <parameter list> field of the macro header lists anywhere from zero to 16 parameters
that are used in the macro body and are defined at assembly time. The symbols used in
the parameter list are only used by the Cross Assembler during the storing of the macro
definition. As a result, while symbols used in the parameter list must be unique symbols
that follow all the the rules of symbol formation as outlined in Chapter 2, they can be
reissued in the parameter list of another macro definition without conflict. Parameter list
items are separated from one another by a comma. The following are examples of macro
definition headers:

MULT_BY_16 MACRO (no paraneters)
Dl RECT_ADD MACRO DESTI NATI ON, SOURCE (two paraneters)

The macro body contains the template that will replace the macro name in the source
program. The macro body can contain instructions, directives, conditional assembly
statements or controls. As a matter of fact, the macro body can contain any legal Cross
Assembler construct as defined in Chapters 2, 4, 5 and 6.

There are two macro definition terminators: ENDM and EXITM. Every macro definition
must have an ENDM at the end of its definition to notify the Cross Assembler that the
macro definition is complete. The EXITM terminator is an alternative ending of the macro
that is useful with conditional assembly statements. When a EXITM is encountered in a
program, all remaining statements (to the ENDM) are ignored.

The following is an example of a macro definition that multiplies the Accumulator by 16:

MULT_BY_16 MACRO
RL A)
RL A x4
RL A .
RL A % 16
ENDM

The following is an example of a macro that adds two humbers together. This could be
used by the programmer to do direct memory to memory adds of external variables
(create a virtual instruction).

DI RECT_ADDX MACRO DESTI NATI ON, SOURCE (two paraneters)
MOV RO, #SOURCE
MOVX A, @0
MOV R1, A
MOV RO, #DESTI NATI ON
MOVX A, @0
ADD A Rl
MOVX @RO, A
ENDM

A final macro definition example shows the use of the EXITM macro terminator. If CMOS
IS non-zero, the MOV and only the MOV instruction will be translated by the Cross
Assembler.

| DLE MACRO
I F (CMOS)
MOV PCON, #I DL
EXI TM
ENDI F
JWP $
ENDM

7.3. Special Macro Operators
There are four special macro operators that are defined below:

% when the PERCENT sign prefaces a symbol in the parameter list, the
symbol's value is passed to the macro's body instead of the symbol itself.

! when the EXCLAMATION POINT precedes a character, that character is
handled as a literal and is passed to the macro body with the
EXCLAMATION POINT removed. This is useful when it is necessary to
pass a delimiter to the macro body. For example, in the following parameter
list, the second parameter passed to the macro body would be a COMMA (,

GENERATE_I NST 75,!,, STK_VALUE

& when the AMPERSAND is used in the macro body, the symbols on both
sides of it are concatenated together and the AMPERSAND is removed.

" when double SEMI-COLONS are used in a macro definition, the comment
preceded by the double SEMI_COLONS will not be saved and thus will not
appear in the listing whenever the macro is invoked. Using the double
SEMI-COLONS lowers the memory requirement in storing the macro
definitions and should be used whenever possible.

Examples of using the above special macro operators follow in the "Using Macros"
section.
7.4. Using Macros

This section section discusses several situations that arise using macros and how to
handle them. In general the discussion uses examples to get the point across. First the

macro definition is listed, then the source line program that will invoke the macro and finally
how the macro was expanded by the Cross Assembler.

7.4.1. NESTING MACROS
The following shows a macro nested to a depth of three. Remember, definitions cannot be
nested. Macros must be defined before they are used in other macro definitions.

Two things should be pointed out from the above example. First, the order of the
parameter list is important. You must maintain the the order of parameters from the macro
definition if the Cross Assembler is to translate the macro correctly.

Secondly, in order to pass parameters to nested macros, simply use the same parameter
symbol in the parameter list of the definition. For example, the parameter DESTINATION
was passed properly to the nested macros ADD_EXT _BYTES and GET_EXT_BYTE.
This occurred because in the macro definition of ADD_DIRECT_BYTES, the parameter
DESTINATION was specified in the parameter lists of both ADD_EXT_BYTES and
GET_EXT_BYTE.

; MACRO DEFI NI TI ONS

GET_EXT_BYTE MACRO

EXT_ADDR

MOV RO, #EXT_ADDR
MOVX A, @O

ENDM

ADD_EXT_BYTES MACRO EXT_DEST, EXT_SRC
GET_EXT_BYTE EXT_DEST
MOV R1,A
GET_EXT_BYTE EXT_SRC
ADD A RIL

ENDM
ADD_DI RECT_BYTES MACRO DESTI NATI ON, SOURCE

| F (SMALL_MODEL)

MoV A, SOURCE
ADD A, DESTI NATI ON
MoV DESTI NATI ON
ELSE
ADD_EXT_BYTES DESTI NATI ON, SOURCE
MOVX @0, A
ENDI F

ENDM

. USAGE | N PROGRAM
ADD_DI RECT_BYTES

; TRANSLATED MACRO

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
48

0100
0102
0103

787F
E2
F9

0104
0106
0107
0108

7880
E2
29
F2

127,128

+1 ADD DI RECT_BYTES 127,128
+1 | F (SMALL_MODEL)

+1 MoV A 128

+1 ADD A 127

+1 MoV 127

+1 ELSE

+2 ADD EXT _BYTES 127, 128
+3 GET_EXT_BYTE 127

+3 MOV RO, #127

+3 MOVX A, @RO

+2 MoV R1, A

+3 GET_EXT_BYTE 128

+3 MoV RO, #128

+3 MOVX A, @RO

+2 ADD A R1

+1 MOVX — @ro, A

+1 ENDI F

7.4.2. LABELS IN MACROS

You have two choices for specifying labels in a macro body. A label can either be passed
to the body as a parameter or it can be generated within the body. The following example
shows both ways.

; MACRO DEFI NI TI ON

MULTI PLE_SHI FT MACRO LABEL, LABEL_SUFFI X, COUNTER, N
COUNTER SET COUNTER+1 ; | NCREMENT SUFFI X FOR NEXT

USAGE

LABEL: o RO, #N

SHI FT&LABEL_SUFFI X: RL A

DINZ RO, SHI FT&LABEL_SUFFI X
ENDM

; USAGE | N PROGRAM

MULTI PLE_SHI FT LOOP_SHI FT, %COUNT, COUNT, 4

; TRANSLATED MACRO

15 +1 MJULTI PLE_SHI FT LOOP_SHI FT, %COUNT, COUNT, 4

0006 16 +1 COUNT SET COUNT+1
17 +1
0100 7804 18 +1 LOOP_SHI FT: MOV RO, #4
0102 23 19 +1 SHI FT5: RL A
0103 D8FD 20 +1 DINZ RO, SHI FT5
22

Points to note in the above example: 1) the double semi-colon caused the comment not to
be listed in the translated macro; 2) the percent sign caused the value of COUNT (in this
case the value 5) to be passed to the macro body instead of the symbol; and 3) the
ampersand allowed two symbols to be concatenated to form the label SHIFT5.

CHAPTER 8

8051 CROSS ASSEMBLER ERROR CODES

8.1. Introduction

When the Cross Assembler encounters an error in the source program, it will emit an error
message in the listing file. If the SNOPRINT control has been invoked, the error message
will be output to the screen.

There are basically two types of errors that are encountered by the Cross Assembler,
translation errors and I/O errors. 1/O errors are usually fatal errors. However, whenever an
error is detected, the Cross Assembler makes every effort possible to continue with the
assembly.

If it is possible to recover from the error and continue assembling, the Cross Assembler
will report the error, use a default condition and continue on its way. However, when a fatal
error is encountered, it is impossible for the Cross Assembler to proceed. In this case, the
Cross Assembler reports the error and then aborts the assembly process.

Fatal I/O error messages are displayed on the screen and are of the form:
FATAL ERROR opening <filename>

where <filename> would be replaced with the file designator initially entered or read from
the source program. The cause of this error is usually obvious, typically a typographical
error or the wrong drive specification.

Another fatal I/0O error message is:
FATAL ERROR writing to <type> file

where <type> would be replaced with either "listing" or "object”. The cause of this error is
usually either a write protected disk or a full disk.

Translation error reports contain at least three lines. The first line is the source line in
which the error was detected, the second line is a pointer to the character, symbol,
expression or line that caused the error. The final line is the error message itself. There
may be more than one error message, depending on the number of errors in the source
line. An example of a source line with two errors in it follows:

0100 2323 26 START: MOV AB, @5

K K K K L L o o e 22 N___N
****ERROR #20: 111 egal operand
****ERROR #20: 111 egal operand

The errors are pointed out by the up-arrows (). For every uparrow there will be an error
message. Errors are ordered left to right, so the first error message corresponds to the
left-most up-arrow and so on. The error message includes an error number and an
description of the error. The error number can be used as an index to the more detailed
error explanations that follow in this chapter.

After the Cross Assembler has completed its translation process, it will print an assembly
complete message:

ASSEMBLY COMPLETE, nn ERRORS FOUND

If it was an error free assembly, in place of the "nn" above the word "NO" will be output.
However, if errors were encountered during the assembly process, the "nn" will be
replaced with the number of errors that were found (up to a maximum of 50). In this case,
an error summary will follow in the listing file with all the errors that were reported during the
assembly. An error summary looks like the following:

ERRCR SUMMARY:
Li ne #26, ERROR #20: |1l egal operand
Li ne #26, ERROR #20: |1l egal operand

The same error message that occurred after the source line appears again prefaced by
the source line number to aid in tracking down the error in the source listing.

8.2. Explanation of Error Messages

ERROR #1: lllegal character
This error occurs when the Cross Assembler encounters a character that is not part of its
legal character set. The Cross Assembler character set can be found in Appendix D.

ERROR #2: Undefined symbol
This error occurs when the Cross Assembler tries to use a symbol that hasn't been
defined. The two most common reasons for this error are typographical errors and
forward references.

ERROR #3: Duplicate symbol
This error occurs when a previously defined symbol or a reserved symbol is

attempted to be defined again. Refer to Appendix C for the reserved words. Also
inspect the symbol in the symbol table listing. If the symbol doesn't appear there,

you are using a reserved word. If the symbol does appeatr, its original definition will
be listed.

ERROR #4: lllegal digit for radix
A digit was encountered that is not part of the legal digits for the radix specified.
Chapter 2 lists the legal digits for each radix available. Often this error occurs
because a symbol was started with a number instead of a letter, question mark, or
underscore.

ERROR #5: Number too large
The number specified, or the returned value of the expression, exceeds 16-bit
precision. The largest value allowed is 65,535.

ERROR #6: Missing END directive
The source program must end with one and only one END directive. The END is
placed after all the assembly line statements.

ERROR #7: lllegal opcode/directive after label
The symbol after a label is not an opcode nor a directive that allows labels. The
only thing permitted on a line after a label is an instruction, the DS, DB or DW
directives, or a comment. If none of these are found, this error will be reported.

ERROR #8: lllegal assembly line
The assembly line doesn't begin with a symbol, label, instruction mnemonic, control,
directive, comment or null line. No attempt is made to translate such a line.

ERROR #9: Text beyond END directive
The END directive must be the last line of the source program. Any text beyond the
END line will cause this error. Any such text is ignore. Text here is defined as any
printable ASCII characters.

ERROR #10: lllegal or missing expression
A number, symbol or arithmetic expression was expected, but it was either found to
be missing or the Cross Assembler was unable to evaluate it properly.

ERROR #11.: lllegal or missing expression operator
An arithmetic operator was expected but it is either missing or it is not one of the
legal operators specified in Chapter 2.

ERROR #12: Unbalanced parentheses
In evaluating an expression, the parentheses in the expression were found not to
balance.

ERROR #13: lllegal or missing expression value
In evaluating an expression, the Cross Assembler expected to find either a number
or a symbol, but it was either missing or illegal.

ERROR #14: lllegal literal expression
This error occurs when a null ASCI! literal string is found. A null ASCII literal is
nothing more than two apostrophes together (") and is illegal.

ERROR #15: Expression stack overflow
The expression stack has a depth of 32 values. The expression being evaluated
exceeds this depth. This is a very rare error. However, if you ever get it, divide the
expression into two or more expressions using the EQU directive.

ERROR #16: Division by zero
The expression being evaluated includes an attempt to divide by zero.

ERROR #17: lllegal bit designator
A bit designator address was specified in the source program and it points to an
illegal bit address. A bit designator contains a byte address, followed by a
PERIOD, followed by the bit index into the byte address (e.g., ACC.7) as discussed
in Chapter 2. This error can occur for one of two reasons. First, if the number or a
symbol that is used to specify the byte address part of the bit designator is not a
legal bit addressable address, ERROR #17 will occur. Second, if the bit index into
the byte address exceeds the number 7, again ERROR #17 will be output.

ERROR #18: Target address exceeds relative address range
A Program Counter relative jump instruction (e.g., SIMP, JZ, JNC, etc.) was
decoded with the target address of the jump exceeding the maximum possible
forward jump of 127 bytes or the maximum possible backward jump of 128 bytes.

ERROR #20: lllegal operand
The operand specified is not a legal operand for the instruction. Review the legal

operands allowed for the instruction.

ERROR #21.: lllegal indirect register
RO and R1 are the only primary legal indirect register. This error occurs when the
indirect addressing mode designator (@) is not followed by either RO, R1 or
symbols that were defined to be equivalent to either RO or R1. This error can also
occur in the MOVC A,@A+DPTR, MOVC A, @A+PC, MOVX A,@DPTR, MOVX
@DPTR,A and the JIMP @A+DPTR instructions if the operands after the indirect
addressing mode designator (@) aren't specified properly.

ERROR #22: Missing operand delimiter
A COMMA operand delimiter is missing from the operand fields of the instruction.

ERROR #23: lllegal or missing directive
This error occurs when the Cross Assembler cannot find a legal directive. The most
common cause of this error is due to leaving the COLON off a label. As a result, the
following opcode mnemonic is attempted to be decoded as a directive.

ERROR #24: Attempting to EQUate a previously SET symbol
Once a symbol is defined using the SET directive, it cannot be later redefined using

the EQU directive.

ERROR #25: Attempting to SET a previously EQUated symbol
Once a symbol is defined using the EQU directive, it cannot be redefined. If you

want the symbol to be redefineable, use the SET directive.

ERROR #26: lllegal SET/EQU expression
The expression following the SET or EQU directive is illegal. This typically occurs
when an attempt is made to define a symbol to be equivalent to an implicit register
other than A, RO, R1, R2, R3, R4, R5, R6 or R7.

ERROR #27: lllegal expression with forward reference
This error occurs when an expression contains a symbol that hasn't been defined
yet. Move the symbol definition earlier in the source file.

ERROR #28: Address exceeds segment range
The address specified exceeds 255 and you are in the DSEG, BSEG, or ISEG.

ERROR #29: Expecting an EOL or COMMENT
The Cross Assembler has completed processing a legal assembly language line
and expected the line to be terminated with either a COMMENT or a carriage
return/line feed pair.

ERROR #30: lllegal directive with current active segment
The specified directive is not legal in the active segment. This can happen by trying

to use the DBIT directive in other than the BSEG, or using the DS directive in the
BSEG.

ERROR #31: Only two character string allowed
This error occurs using the DW directive. The maximum ASCII literal allowed in a
DW specification is a two character string.

ERROR #32: Byte definition exceeds 255
This error occurs using the DB directive. The value specified in the DB
specification cannot fit into a byte.

ERROR #33: Premature end of string
An ASCII literal string was not terminated properly with an apostrophe.

8-5

ERROR #34: lllegal register bank number
This error occurs when the number specified with the USING directive exceed 3.
Legal register bank numbers are: 0, 1, 2, 3.

ERROR #35: Include file nesting exceeds 8
The maximum number of nested include files is eight. You will get this error if you
exceed this limit.

ERROR #36: lllegal or missing argument
This error occurs when the syntax of a Cross Assembler control requires an
argument and it was either incorrectly specified or is missing all together.

ERROR #37: lllegal control statement
The Cross Assembler does not recognize the specified control. The legal controls
are detailed in Chapter 6.

ERROR #38: Unable to open file
The Cross Assembler is unable to open the file as specified. This is a fatal error
which will abort the assembly process.

ERROR #39: lllegal file specification
The file specification is not a legal file designator. Refer to your DOS manual for a
description of legal file designators. This is a fatal error which will abort the
assembly process.

ERROR #40: Program synchronization error
This error occurs when the Cross Assembler is generating the object hex file and
finds that the code segment location counter is not advancing properly. There are
two cases where this can happen. First, if the source program uses ORG directives
and they are not placed in ascending order. Second, if a generic CALL or JIMP is
made to a forward reference that is actually defined later in the program to be a
backward reference. For example, the following code sequence will cause this error
due to the second reason:

BACK_REF: NOP
CALL FORWARD REF
FORWARD REF EQU BACK_REF

During the first pass, the generic CALL will be replaced with a 3-byte LCALL
instruction. During the second pass, the generic CALL will be replaced with a
2-byte ACALL instruction. To prevent this kind of problem, use the generic CALLs
and JMPs with labeled targets, not EQU or SET defined symbols.

ERROR #41: Insufficient memory
This error occurs when there isn't enough memory to hold all the symbols that have
been generated by the source program. If you have 96 Kbytes or more of RAM this

8-6

will be a very rare error. Only a massive source program or numerous large macros
could potentially cause this error. However, if this error does occur, your best bet is
to either buy more memory or to break up your program into smaller pieces and
share common symbols with a common $INCLUDE file.

ERROR #42: More errors detected, not listed
The internal error buffer can hold 50 errors. If more than 50 errors occur, only the
first 50 will be reported.

ERROR #43: ENDIF without IF
The terminator of a conditional assembly block (ENDIF) was recognized without
seeing a matching IF.

ERROR #44: Missing ENDIF
A conditional assembly block was begun with an IF statement, but no matching
ENDIF was detected.

ERROR #45: lllegal or missing macro name
The MACRO keyword was recognized, but the symbol that is supposed to precede
the MACRO keyword was missing, an illegal symbol or a duplicate symbol.

ERROR #46: Macro nesting too deep
Macros can be nested to a depth of 9 levels. Exceeding this limit will cause this
error.

ERROR #47: Number of parameters doesn't match definition
In attempting to use a macro, the number of parameters in the parameter list does
not equal the number of parameters specified in the macro definition. They must
match.

ERROR #48: lllegal parameter specification
This error typically occurs when a previously defined symbol is used in the
parameter list of the macro definition.

ERROR #49: Too many parameters
The maximum number of parameters in a macro parameter list is sixteen. This
error occurs when you exceed that limit.

ERROR #50: Line exceeds 255 characters
The maximum length of a source line is 255 characters. If a carriage return/line

feed pair is not detected in the first 256 characters of a line, this error is reported
and the line is truncated at 255 characters.

APPENDIX A

SAMPLE PROGRAM AND LISTING

A.1l. Source File

; 8-bit by 8-bit

signed nultiply--byte signed multiply

; This routine takes the signed byte in nmultiplicand and

; multiplies it

; the signed 16-bit product

; This routine assumes 2s conpl enent
The maxi mum nunbers possible are then -128 and
Mul ti plying the possible maxi mnum nunbers together
product,

; numnbers.
: +127.
; easily fits into a 16-bit
; done on the answer.

; Regi sters altered by routine:

; Primary controls

$MOD51

$TI TLE(BYTE SI GNED MULTI PLY)
$DATE(JUL- 30- 84)
$PAGEW DTH(132)
$OBJECT(B: BMULB. OBJ)

;. Variable declarations

sign_flag BIT

OFOH
mul tiplier DATA 030H
mul ti plicand DATA 031H
product _hi gh DATA 032H
product | ow DATA 033H
ORG 100H
; byte_signed _multiply:
CLR sign_flag
MOV A multiplier
JNB ACC. 7, posi tive
CPL A
I NC A
SETB sign_flag

by the signed byte in multiplier
i n product _hi gh and product | ow

and pl aces

representation of signed

so no overflow test is

A, B, PSW

; sign of product
;8-bit multiplier
;8-bit multiplicand
; high byte of 16-bit
;1 ow byte of answer

answer

;arbitrary start

;reset sign
;put multiplier in accunul ator
;test sign bit of multiplier

; negative--conpl emrent and
;add 1 to convert to positive
;and set sign flag

A-1

positive: MW
JNB
XRL
I NC
CPL

mul tiply: MJL
sign_test: JNB
XRL
CPL
ADD
JNC
I NC

byte_signed_exit:

MOV
MOV

RET
END

B, mul ti plicand
B.7, multiply
B, #0FFh

B

sign_fl ag

AB

sign_fl ag, byte_signed_exit

B, #0FFh
A
A #1

byte_signed_exit

B

product _hi gh, B
product _| ow, A

;put nultiplicand in B register
;test sign bit of nmultiplicand
; negative--conpl enent and

;add 1 to convert to positive
;conpl ement sign flag

;do unsigned nultiplication

;i1 f positive, done

;el se have to compl ement both

;bytes of the product and inc

;add here because inc doesn't
;set the carry flag

;if add overflowed A, inc the

; high byte

;save the answer

;and return

A.2. Source File Listing

BMULB

00FO0
0030
0031
0032
0033

0100

0100
0100
0102
0104
0107

Q2F0
E530
30E704
F4

BMULB

0108
0109

0108
010E
0111
0114
0116

0118

0119
011C
011F
0120
0122
0124

0126
0126
0129

012B

04
D2FO

8531F0
30F707
63FOFF
05F0
B2FO

A

30F00A
63FOFF
F4
2401
5002
05F0

85F032
F533

22

ASSEMBLY COWPLETE, 0 ERRORS FOUND

BMULB

ACC
B

BYTE_SI GNED_EXI T

JUL- 30- 84

JUL- 30- 84

BYTE SI GNED MULTI PLY
1 H
2 ; 8-bit by 8-bit signed nultiply--byte signed multiply
3 H
4 H This routine takes the signed byte in multiplicand and
5 H multiplies it by the signed byte in nultiplier and pl aces
6 H the signed 16-bit product in product_high and product_| ow
7 H
8 H This routine assunes 2s conpl ement representation of signed
9 H nunbers. The maxi num nunbers possible is then -128 and +127.
10 H Ml tiplying the possible maxi mum nunbers together easily fits
11 H ina 16-bit product, so no overflow test is done on the answer.
12 H
13 H Registers altered by routine: A B, PSW
14 H
15 H
16 ; Primary controls
17 $MODB1
18 $TI TLE(BYTE SI GNED MULTI PLY)
19 $DATE(JUL- 30- 84)
20 $PAGEW DTH(132)
21 $OBJECT(B: BMULB. OBJ)
22 H
23 H
24 ; Variable declarations
25 H
26 sign_flag BI T OFOH ;sign of product
27 nul tiplier DATA 030H ;8-bit multiplier
28 nul tiplicand DATA 031H ;8-bit multiplicand
29 product _hi gh DATA 032H ;high byte of 16-bit answer
30 product _| ow DATA 033H ;low byte of answer
31 H
32 H
33 H
34 CRG 100H ;arbitrary start
35 ;
36 byt e_si gned_nul ti ply:
37 AR sign_flag ;reset sign
38 MV A multiplier ;put multiplier in accumul ator
39 JINB ACC.7,positive ;test sign bit of multiplier
40 cPL A ;negati ve- - conpl enent and
BYTE SI GNED MALTI PLY
41 INC A ;add 1 to convert to positive
42 SETB sign_flag ;and set sign flag
43 H
44 posi tive: MOV B,multiplicand ;put multiplicand in B register
45 JINB B.7, mul tiply ;test sign bit of multiplicand
46 XRL B, #0FFh ;negati ve- - conpl enent and
47 INC B ;add 1 to convert to positive
48 cPL sign_flag ;conpl enent sign flag
49 H
50 nul tiply: ML AB ;do unsigned multiplication
51 H
52 sign_test: JINB sign_fl ag, byt e_si gned_exi t ;if positive, done
53 XRL B, #0FFh ;el se have to conpl ement both
54 cPL A ;bytes of the product and inc
55 ADD A #1 ;need add here because inc doesn't set
56 JINC byt e_si gned_exi t ;the carry flag
57 INC B ;if add overflowed A inc the high byte
58 ;
59 byt e_signed_exit:
60 product _high, B ;save the answer
61 MV product _| ow, A
62 H
63 RET ;and return
64 END
BYTE SI GNED MALTI PLY

D ADDR
D ADDR
C ADDR

BYTE_S| GNED_MLTIPLY C ADDR

MUALTI PLI CAND

MALTI PLI ER
MALTI PLY
PCsI TI VE

PRCDUCT_HI GH
PRCDUCT_LOW

S| GN_FLAG
S GN_TEST

00EOH PREDEFI NED
00FOH PREDEFI NED
0126H

0100H NOT USED
0031H

0030H

0118H

010BH

0032H

0033H

00FOH

0119H NOT USED

JUL- 30- 84

PAGE 1

PAGE 2

PAGE 3

APPENDIX B

PRE-DEFINED BYTE AND BIT ADDRESSES

The following tables detail the pre-defined byte and bit addresses for the 8051/8031

microcontrollers supported by the MetaLink family of emulators. Proliferation parts are

delimited from the standard
MCS-51 definitions by asterisk ("*") boxes.

This list covers these microcontrollers:

8044 8031 8032 8051 8052 8053 80C154 80C321
8344 80C31 80C32 8751 8752 8753 83Cl154 80C521
8744 80C51 80C52 85C154 87C521
87C51

80C321 B8O0C51FA(80C252) 80C452 80C152JA/JB/JC/IJD 80C851
80C541 B83C51FA(83C252) 83C452 83Cl52JA/JC 83C851
87C541 87C51FA(87C252) 87C452

80C451 80C652 80C552 83Cr51 83Cr752 80512 80515 80C515 80C517

83C451 83C652 83C552 87Cr51 87Cr752 80532 80535 80C535 80C537
87C451 87C652 87C552

B.1. Pre-defined Byte Addresses

PO DATA 080H ; PORT O

SP DATA 081H ; STACK PO NTER

DPL DATA 082H ; DATA PO NTER - LOW BYTE
DPH DATA 083H ; DATA PO NTER - HI GH BYTE

LR R R RS RS R E RS RS SRR SRR RS E RS EE R SRR ERE R RS EREEEREEEREEE SRR SRR E SRR ERERE S

the 80C321/80C521

DPL1 DATA 084H ; DATA PO NTER LOW 1
DPH1 DATA 085H ; DATA PO NTER HIGH 1
DPS DATA 086H ; DATA PO NTER SELECTI ON

LR R R RS RS R E RS RS SRR SRR RS E RS EE R SRR ERE R RS EREEEREEEREEE SRR SRR E SRR ERERE S

LR R R RS RS R E RS RS SRR SRR RS E RS EE R SRR ERE R RS EREEEREEEREEE SRR SRR E SRR ERERE S

t he 83C152/80C152
GMOD DATA 084H ; GSC MODE
TFI FO DATA 085H ; GSC TRANSM T BUFFER

LR R R RS RS R E RS RS SRR SRR RS E RS EE R SRR ERE R RS EREEEREEEREEE SRR SRR E SRR ERERE S

LR R R RS RS R E RS RS SRR SRR RS E RS EE R SRR ERE R RS EREEEREEEREEE SRR SRR E SRR ERERE S

the 80C517/80C537

WDTREL DATA 086H ; WATCHDOG Tl MER RELOAD REG
kkkhkkhkkhkhkhkhkkkhkhkhkhhhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhhkhkhkhkkkhkhkhhkhkhkhkhkkhkhkkhkhkhkhkhkkkkkk k k k khkkkxkkk k,k,**
PCON DATA 087H ; POWNER CONTROL

TCON DATA 088H ; TI MER CONTROL

TMOD DATA 089H ; TI MER MODE

TLO DATA 08AH ; TIMER O - LOW BYTE

B-1

for

for

for

TL1 DATA 08BH ; TIMER 1 - LOW BYTE

EE R I R R R I R R R I R I R

t he 83C751/83C752
RTL DATA 08BH ; TIMER O - LOW BYTE RELOAD

EE R I R R R I R R R I R I R

THO DATA 08CH ; TIMER O - HI GH BYTE
THL DATA 08DH ; TIMER 1 - H GH BYTE

EE R R R R R R R R R R R R R R R R R I R R R I R R R I R R I R R

t he 83C751/83C752
RTH DATA 08DH ; TIMER O - HI GH BYTE RELOAD

EE R R R R R R R R R R R R R R R R I R R R I R R R I R R I R R

EE R R R R R R R R R R R R R R R R R I R R R I R R I R I R R

t he 83Cr52
PVWM DATA 08EH ; PULSE W DTH MODULATI ON

EE R R R R R R R R R R R R R I R R R I R R R I R R I R R

P1 DATA 090H ; PORT 1

EE R I R R R I R R R I R I R R

t he 83C152/80C152

P5 DATA 091H ; PORT 5

DCONO DATA 092H ; DVA CONTROL 0O

DCON1 DATA 093H ; DMAL CONTROL 1

BAUD DATA 094H ; GSC BAUD RATE

ADRO DATA 095H ; GSC MATCH ADDRESS 0

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C452/ 83C452
DCONO DATA 092H ; DMA CONTROL O
DCON1 DATA 093H ; DMAL CONTROL 1

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C517/80C537
DPSEL DATA 092H ; DATA PO NTER SELECT REG STER

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

SCON DATA 098H ; SERI AL PORT CONTROL
SBUF DATA 099H ; SERI AL PORT BUFFER

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 83C751/83C752
| 2CON DATA 098H ; 12C CONTROL
| 2DAT DATA 099H ;1 2C DATA

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C517/80C537

I EN2 DATA 09AH ; | NTERRUPT ENABLE REG STER 2
S1CON DATA 09BH ; SERI AL PORT CONTROL 1

S1BUF DATA 09CH ; SERI AL PORT BUFFER 1

S1REL DATA 09DH ; SERI AL RELOAD REG 1

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

B-2

for

for

for

for

for

for

for

for

P2 DATA OAOH ; PORT 2
I E DATA 0A8H ; | NTERRUPT ENABLE

LR R R R SRR S EEEEEREEEEEEREEEREEEEREESEEREEEEEEREEEREEEREE SRS EREEEEEE SRR SRS EEREEREREESES

t he 80C51FA/ 83C51FA(83C252/ 80C252)
SADDR DATA 0A9H ; SLAVE | NDI VI DUAL ADDRESS

LR R R R EEREEEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES

LR R R R SRR EEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

t he 80515/ 80535 and 80C517/80C537
I PO DATA 0A9H ; | NTERRUPT PRI ORI TY REG STER O

LR R R R SRR EEEEEEREEREEEEREEEREEEEREESEEREEEEEEREREEEREEEEEEEREEEREEE R SRR SRR SRR EEREESS

LR R R R R SRR EEREREEREEEEREEEREEEEREESEEREEEEREEREEEREEEEEE SRS SRR SRR SRR SRR SRR EEREESES
the 80C321/80C521

VDS DATA 0A9H ; WATCHDOG SELECTI ON

VDK DATA 0AAH ; WATCHDOG KEY

LR R R R R R R R EEREREEREEEEREEEREEEEREEEEREEEEEEREEEEREEEEEE SRS EREEE R SRR SRS SRR EEREESS

LR R R R R R RS EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

t he 83C152/80C152

P6 DATA 0A1H ; PORT 6

SARLO DATA 0A2H ; DMA SOURCE ADDR. 0 (LOW
SARHO DATA 0A3H ; DMA SOURCE ADDR. 0 (HI GH)
I FS DATA 0A4H ; GSC | NTERFRAME SPACI NG
ADR1 DATA 0A5H ; GSC MATCH ADDRESS 1

LR R R R SRR S EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEEREE SRS EREEE R SRR SRS SRR EEREESS

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

the 80C452/83C452

SARLO DATA 0A2H ; DMA SOURCE ADDR. 0 (LOW

SARHO DATA 0A3H ; DMA SOURCE ADDR. 0 (HI GH)

R S S S S S S S S I I S
R I S S S S S S S S I I S R S S
t he 80C552/83C552

CMLO DATA 0A9H ; COMPARE 0 - LOW BYTE

CM_1 DATA 0AAH ; COMPARE 1 - LOW BYTE

CM_2 DATA OABH ; COWPARE 2 - LOW BYTE

CTLO DATA OACH ; CAPTURE 0 - LOW BYTE

CTL1 DATA OADH ; CAPTURE 1 - LOW BYTE

CTL2 DATA OAEH ; CAPTURE 2 - LOW BYTE

CTL3 DATA OAFH ; CAPTURE 3 - LOW BYTE

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

P3 DATA OBOH ; PORT 3

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

t he 83C152/80C152

SARL1 DATA 0B2H ; DMA SOURCE ADDR. 1 (LOW
SARH1 DATA 0B3H ; DMA SOURCE ADDR. 1 (HI GH)
SLOTTM DATA 0B4H ; GSC SLOT TI ME

ADR2 DATA 0B5H ; GSC MATCH ADDRESS 2

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

the 80C452/83C452
SARL1 DATA 0B2H ; DMA SOURCE ADDR. 1 (LOW
SARH1 DATA 0B3H ; DMA SOURCE ADDR. 1 (HI GH)

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

B-3

for

for

for

for

for

for

for

for

I P DATA 0B8H ; | NTERRUPT PRI ORI TY

EE R I R R R I R R R I R I R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)

SADEN DATA 0B9H ; SLAVE ADDRESS ENABLE

EE R I R R R I R R R I R I R

EE R R R R R R R R R R R R R R R R R R I R R R I R R R I R I R R for

t he 80515/80535 and 80C517/80C537

I P1 DATA 0B9H ; | NTERRUPT PRI ORI TY REG STER 1

| RCON DATA 0CoH ; | NTERRUPT REQUEST CONTROCL

CCEN DATA 0C1H ; COVPARE/ CAPTURE ENABLE

CCL1 DATA ocz2H ; COVPARE/ CAPTURE REG STER 1 - LOW BYTE
CCH1 DATA 0C3H ; COVPARE/ CAPTURE REG STER 1 - HI GH BYTE
CCL2 DATA 0C4H ; COVPARE/ CAPTURE REG STER 2 - LOW BYTE
CCH2 DATA 0C5H ; COVPARE/ CAPTURE REG STER 2 - HI GH BYTE
CCL3 DATA 0C6H ; COVPARE/ CAPTURE REG STER 3 - LOW BYTE
CCH3 DATA 0C7H ; COVPARE/ CAPTURE REG STER 3 - HI GH BYTE
T2CON DATA 0C8H ; TIMER 2 CONTROL

CRCL DATA 0CAH ; COVPARE/ RELOAD/ CAPTURE - LOW BYTE

CRCH DATA 0CBH ; COVPARE/ RELOAD/ CAPTURE - HI GH BYTE

TL2 DATA 0CCH ; TIMER 2 - LOW BYTE

TH2 DATA 0CDH ; TIMER 2 - HI GH BYTE

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 80C517/80C537

CC4AEN DATA 0C9H ; COVPARE/ CAPTURE 4 ENABLE
CCL4 DATA O0CEH ; COVPARE/ CAPTURE REG STER 4 - LOW BYTE
CCH4 DATA O0CFH ; COVPARE/ CAPTURE REG STER 4 - HI GH BYTE

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

the RUPI -44

STS DATA 0C8H ; SIU STATUS REG STER
SMD DATA 0C9H ; SERI AL MODE

RCB DATA 0CAH ; RECEI VE CONTROL BYTE
RBL DATA 0CBH ; RECElI VE BUFFER LENGTH
RBS DATA 0CCH ; RECElI VE BUFFER START
RFL DATA 0CDH ; RECEI VE FI ELD LENGTH
STAD DATA O0CEH ; STATI ON ADDRESS
DVA_CNT DATA O0CFH ; DMA COUNT

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

the 8052/ 8032, 80C51FA/ 83C51FA(83C252/80C252), 80C154/83C154
T2CON DATA 0C8H ; TEMER 2 CONTROL

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)
T2MCD DATA 0C9H ; TEMER 2 MODE CONTROL

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R for

the 8052/ 8032, 80C51FA/ 83C51FA(83C252/80C252), 80C154/83C154

RCAP2L DATA 0CAH ; TIMER 2 CAPTURE REG STER, LOW BYTE
RCAP2H DATA 0CBH ; TIMER 2 CAPTURE REG STER, HI GH BYTE
TL2 DATA 0CCH ; TIMER 2 - LOW BYTE

B-4

TH2 DATA 0CDH ; TIMER 2 - HI GH BYTE

R R R R R SRR EEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEEE RS SRR SRR SRR SRR EEREEEREESES

LR R R R SRR S EEEEEREEEEEEREEEREEEEREESEEREEEEEEREEEREEEREE SRS EREEEEEE SRR SRS EEREEREREESES for

t he 83C152/80C152

P4 DATA 0COH ; PORT 4

DARLO DATA 0C2H ; DMA DESTI NATI ON ADDR. 0 (LOW
DARHO DATA 0C3H ; DMA DESTI NATI ON ADDR. 0 (HI GH)
BKOFF DATA 0C4H ; GSC BACKOFF TI MER

ADR3 DATA 0C5H ; GSC MATCH ADDRESS 3

I EN1 DATA 0C8H ; | NTERRUPT ENABLE REG STER 1

LR R R R R SRR EEREREEREEEEREEEREEEEREESEEREEEEREEREEEREEEEEE SRS SRR SRR SRR SRR SRR EEREESES

LR R R R SRR S EEEEREREEREEEEREEEREEEEREESEREEEEEEREEEREEEREE RS SRR SRR SRR SRR SRR EEREESS for

the 80C452/83C452

P4 DATA 0COH : PORT 4
DARLO DATA 0C2H . DVA DESTI NATI ON ADDR. 0 (LOW
DARHO DATA 0C3H . DVA DESTI NATI ON ADDR. 0 (HI GH)

LR R R R R R RS EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEEE RS SRR SRR SRR SRS SRR EEREESS

LR R R R SRR EEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEREEEEEE RS SRR SRR SRR SRR EEREEEREE S for

the 80C451/83C451
P4 DATA 0COH ; PORT 4
P5 DATA 0C8H ; PORT 5

LR EREE SRR S EEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR S EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEEREE SRS EREEE R SRR SRS SRR EEREESS for

the 80512/ 80532
| RCON DATA 0COH ; | NTERRUPT REQUEST CONTROL

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESES for

t he 80C552/83C552

P4 DATA 0COH ; PORT 4

P5 DATA 0C4H ; PORT 5

ADCON DATA 0C5H ; Al D CONVERTER CONTRCL
ADCH DATA 0C6H ; A'D CONVERTER HI GH BYTE
TM2I R DATA 0C8H ; T2 1 NTERRUPT FLAGS
CVHO DATA 0C9H ; COWPARE 0 - HI GH BYTE
CivH1 DATA 0CAH ; COWPARE 1 - HI GH BYTE
CvH2 DATA 0CBH ; COWPARE 2 - HI GH BYTE
CTHO DATA 0CCH ; CAPTURE 0 - HI GH BYTE
CTHL DATA 0CDH ; CAPTURE 1 - HI GH BYTE
CTH2 DATA 0CEH ; CAPTURE 2 - HI GH BYTE
CTH3 DATA 0CFH ; CAPTURE 3 - HI GH BYTE

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

PSW DATA ODOH ; PROGRAM STATUS WORD

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

t he RUPI -44

NSNR DATA OD8H ; SEND COUNT/ RECEI VE COUNT
SI UST DATA OD9H ; SIU STATE COUNTER

TCB DATA ODAH ; TRANSM T CONTROL BYTE
TBL DATA ODBH ; TRANSM T BUFFER LENGTH
TBS DATA ODCH ; TRANSM T BUFFER START

FlI FQO DATA ODDH ; THREE BYTE FI FO

Fl FOL DATA ODEH

B-5

Fl FO2

DATA

ODFH

EE R I R R R I R R R I R I R

EE R I R R R I R R R I R I R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)

CCON DATA OD8H ; CONTROL COUNTER

CMOD DATA OD9H ; COUNTER MODE

CCAPMD DATA ODAH ; COVPARE/ CAPTURE MODE FOR PCA MODULE 0
CCAPML DATA 0DBH ; COVPARE/ CAPTURE MODE FOR PCA MODULE 1
CCAPM2 DATA 0DCH ; COVPARE/ CAPTURE MODE FOR PCA MODULE 2
CCAPM3 DATA ODDH ; COVPARE/ CAPTURE MODE FOR PCA MODULE 3
CCAPMA DATA ODEH ; COVPARE/ CAPTURE MODE FOR PCA MODULE 4

EE R R R R R R R R R R R R R I R R R I R R R I R R R I R R I R R

EE R R R R R R R R R R R R R R R R I R R R I R R R I R R I R R

t he 80515/ 80535

ADCON DATA OD8H ; A/ D CONVERTER CONTRCL
ADDAT DATA OD9H ; A/ D CONVERTER DATA
DAPR DATA ODAH ; D A CONVERTER PROGRAM REG STER

EE R I R R R I R R I R I R R

EE R R R R R R R R R R R R R R R R R R R I R R R I R R I R R I R R

t he 83C152/80C152

DARL1 DATA 0D2H ; DMA DESTI NATI ON ADDR. 1 (LOW
DARH1 DATA OD3H ; DMA DESTI NATI ON ADDR. 1 (HI GH)
TCDCNT DATA 0D4H ; GSC TRANSM T COLLI SI ON COUNTER
AMSKO DATA OD5H ; GSC ADDRESS MASK 0

TSTAT DATA OD8H TRANSM T STATUS (DMA & GSC)

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C452/ 83C452
DARL1 DATA 0D2H ; DMA DESTI NATI ON ADDR. 1 (LOW
DARH1 DATA OD3H ; DMA DESTI NATI ON ADDR. 1 (HI GH)

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C451/83C451
P6 DATA OD8H ; PORT 6

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

the 80512/ 80532

ADCON DATA OD8H ; A/ D CONVERTER CONTRCL

ADDAT DATA OD9H ; A/ D CONVERTER DATA

DAPR DATA ODAH ; D A CONVERTER PROGRAM REG STER
P6 DATA ODBH ; PORT 6

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 83C751/83C752
| 2CFG DATA OD8H ; 1 2C CONFI GURATI ON

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

t he 80C552/83C552 and 80C652/ 83C652

S1CON DATA OD8H ; SERIAL 1 CONTROL

S1STA DATA OD9H ; SERIAL 1 STATUS

S1DAT DATA ODAH ; SERI AL 1 DATA

S1ADR DATA ODBH ; SERIAL 1 SLAVE ADDRESS

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

B-6

for

for

for

for

for

for

for

LR R R R R R RS EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES for

the 80C517/80C537

CMLO DATA OD2H ; COWPARE REG STER 0 - LOW BYTE
CVHO DATA OD3H ; COWPARE REG STER 0 - HI GH BYTE
CM_1 DATA 0D4H ; COWPARE REG STER 1 - LOW BYTE
CivH1 DATA OD5H ; COMPARE REG STER 1 - HI GH BYTE
CM_2 DATA OD6H ; COWPARE REG STER 2 - LOW BYTE
CvH2 DATA OD7H ; COWPARE REG STER 2 - HI GH BYTE
ADCONO DATA OD8H ; A/ D CONVERTER CONTROL 0

ADDAT DATA OD9H ; Al D CONVERTER DATA

DAPR DATA ODAH ; DI A CONVERTER PROGRAM REG STER
P7 DATA ODBH ; PORT 7

ADCON1 DATA ODCH ; A/ D CONVERTER CONTRCOL 1

P8 DATA ODDH ; PORT 8

CTRELL DATA ODEH ; COM TI MER REL REG - LOW BYTE
CTRELH DATA ODFH ; COM TI MER REL REG - HI GH BYTE

LR R R R R R RS EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

ACC DATA OEOH ; ACCUMULATOR

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS for

t he 83C152/80C152

BCRLO DATA OE2H ; DMA BYTE COUNT 0 (LOW
BCRHO DATA OE3H ; DMA BYTE COUNT 0 (HI GH)
PRBS DATA OE4H ; GSC PSEUDO- RANDOM SEQUENCE
AMSBK1 DATA OE5H ; GSC ADDRESS MASK 1

RSTAT DATA OE8H ; RECEI VE STATUS (DMA & GSC)

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESES

LR R R R SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE SR EREEE R SRR SRR SRR EEREESES for

the 80C452/83C452

BCRLO DATA OE2H ; DMA BYTE COUNT 0 (LOW
BCRHO DATA OE3H ; DMA BYTE COUNT O (HI GH)
HSTAT DATA OE6H ; HOST STATUS

HCON DATA OE7H ; HOST CONTROL

SLCON DATA OE8H ; SLAVE CONTROL

SSTAT DATA OE9H ; SLAVE STATUS

I WPR DATA OEAH ; | NPUT VRI TE PO NTER

| RPR DATA OEBH ; | NPUT READ PO NTER

CBP DATA OECH ; CHANNEL BOUNDARY PO NTER
FI' N DATA OEEH y FIFO I'N

CIN DATA OEFH ; COMMAND | N

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

t he 80515/ 80535
P4 DATA OE8H ; PORT 4

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 80C451/83C451
CSR DATA OE8H ; CONTROL STATUS

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 80512/ 80532
P4 DATA OE8H ; PORT 4

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

B-7

EE R I R R R I R R R I R I R for

t he 80C552/ 83C552

I EN1 DATA OE8H ; | NTERRUPT ENABLE REG STER 1
TM2CON DATA OEAH ; T2 COUNTER CONTROL

CTCON DATA OEBH ; CAPTURE CONTROL

TM.2 DATA OECH ; TIMER 2 - LOW BYTE

TVH2 DATA OEDH ; TIMER 2 - H GH BYTE

STE DATA OEEH ; SET ENABLE

RTE DATA OEFH ; RESET/ TOGGLE ENABLE

EE R R R R R R R R R R R R R R R R R I R R R I R R I R I R R

EE R R R R R R R R R R R R R R R R R I R R R I R R R I R R I R R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)

CL DATA OE9H ; CAPTURE BYTE LOW

CCAPOL DATA OEAH ; COVPARE/ CAPTURE 0 LOW BYTE
CCAP1L DATA OEBH ; COVPARE/ CAPTURE 1 LOW BYTE
CCAP2L DATA OECH ; COVPARE/ CAPTURE 2 LOW BYTE
CCAP3L DATA OEDH ; COVPARE/ CAPTURE 3 LOW BYTE
CCAP4L DATA OEEH ; COVPARE/ CAPTURE 4 LOW BYTE

EE R I R R R I R R I R I R R

EE R R R R R R R R R R R R R R R R R R R I R R R I R R I R R I R R for

t he 80C517/80C537

CTCON DATA OE1H ; COM TI MER CONTRCL REG

CM.3 DATA OE2H ; COMPARE REG STER 3 - LOWBYTE
CVH3 DATA OE3H ; COMPARE REG STER 3 - HI GH BYTE
CML4 DATA OE4H ; COMPARE REG STER 4 - LOW BYTE
CMH4 DATA OE5H ; COMPARE REG STER 4 - HI GH BYTE
CML5 DATA OE6H ; COMPARE REG STER 5 - LOW BYTE
CMHS DATA OE7H ; COMPARE REG STER 5 - HI GH BYTE
P4 DATA OE8H ; PORT 4

VDO DATA OE9H ; MUL/ DIV REG 0

MD1 DATA OEAH ; MUL/ DIV REG 1

MD2 DATA OEBH ; MUL/ DIV REG 2

MD3 DATA OECH ; MUL/ DIV REG 3

VD4 DATA OEDH ; MUL/ DIV REG 4

VD5 DATA OEEH ; MUL/ DIV REG 5

ARCON DATA OEFH ; ARl THVETI C CONTROL REG

R IR IR Ik S S S S S S R I I S Sk S
B DATA OFOH ; MULTI PLI CATI ON REG STER

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 80C154/83C154
| OCON DATA OF8H ; 1/ O CONTROL REG STER

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 83C152/80C152

BCRL1 DATA OF2H ; DMVA BYTE COUNT 1 (LOW

BCRH1 DATA OF3H ; DMA BYTE COUNT 1 (H GH)

RFI FO DATA OF4H ; GSC RECEI VE BUFFER

MYSLOT DATA OF5H ; GSC SLOT ADDRESS

I PN1 DATA OF8H ; | NTERRUPT PRI ORI TY REG STER 1

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R for

t he 83C851/80C851

B-8

EADRL DATA OF2H ; EEPROM Addr ess Register - Low Byte

EADRH DATA OF3H ; EEPROM Addr ess Regi ster - High Byte

EDAT DATA OF4H ; EEPROM Dat a Regi ster

ETIM DATA OF5H ; EEPROM Ti mer Regi ster

ECNTRL DATA OF6H ; EEPROM Control Register

EE R R R R R R I I A I S I I A S R R A A I O I I Rk
EE R R R R R R I I I I I A I R I A I A R R A A I I I R Rk R R O I I A
t he 80C452/ 83C452

BCRL1 DATA OF2H ; DMA BYTE COUNT 1 (LOW

BCRH1 DATA OF3H ; DMA BYTE COUNT 1 (H GH)

| THR DATA OF6H ; | NPUT FI FO THRESHOLD

OTHR DATA OF7H ; OUTPUT FI FO THRESHOLD

| EP DATA OF8H ; | NTERRUPT PRI ORI TY

MODE DATA OF9H ; MODE

ORPR DATA OFAH ; OUTPUT READ POl NTER

OWPR DATA OFBH ; OUTPUT VWRI TE PO NTER

IMN DATA OFCH ; | MMEDI ATE COVMAND | N

I MOUT DATA OFDH ; | MMEDI ATE COVMAND OUT

FOUT DATA OFEH ; FI FO OUT

cout DATA OFFH ; COMMAND OUT

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

t he 80515/ 80535
P5 DATA OF8H ; PORT 5

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR S EEEEREREEREEEEREEEREREEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES

the 80512/ 80532
P5 DATA OF8H ; PORT 5

LR R R R SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE SR EREEE R SRR SRR SRR EEREESES

LR R R R SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE SR EREEE R SRR SRR SRR EEREESES

the 83C751/83C752
| 2STA DATA OF8H ; 12C STATUS

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

t he 80C552/83C552

| P1 DATA OF8H ; | NTERRUPT PRIORITY REG STER 1

PWWVD DATA OFCH ; PULSE W DTH REGQ STER 0

PVWML DATA OFDH ; PULSE W DTH REGQ STER 1

PVWWP DATA OFEH ; PRESCALER FREQUENCY CONTROL

T3 DATA OFFH ; T3 - WATCHDOG TI MER

R S S I S S S S S I S R S S S I S S
R S S I S S S S S I S R S S S I S S
the 80C517/80C537

CMEN DATA OF6H ; COVPARE ENABLE

CML6 DATA OF2H ; COWPARE REG STER 6 - LOW BYTE

CVH6 DATA OF3H ; COWPARE REG STER 6 - HI GH BYTE

CWML7 DATA OF4H ; COWPARE REG STER 7 - LOW BYTE

CivH7 DATA OF5H ; COWPARE REG STER 7 - HI GH BYTE

CMSEL DATA OF7H ; COWPARE | NPUT REG STER

P5 DATA OF8H ; PORT 5

P6 DATA OFAH ; PORT 6

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

t he 80C51FA/ 83C51FA(83C252/ 80C252)

for

for

for

for

for

for

for

CH DATA OF9H ; CAPTURE HI GH BYTE

CCAPOH DATA OFAH ; COVPARE/ CAPTURE 0 HI GH BYTE
CCAP1H DATA OFBH ; COVPARE/ CAPTURE 1 HI GH BYTE
CCAP2H DATA OFCH ; COVPARE/ CAPTURE 2 HI GH BYTE
CCAP3H DATA OFDH ; COVPARE/ CAPTURE 3 HI GH BYTE
CCAP4H DATA OFEH ; COVPARE/ CAPTURE 4 HI GH BYTE

EE R I R R R I R R R I R I R

EE R R R R R R R R R R R R R R R R R R I R R R I R R R I R I R R for

t he 83Cr52
PVENA DATA OFEH ; PULSE W DTH ENABLE

EE R R R R R R R R R R R R R R R R R I R R R I R R R I R R I R R

B.2. Pre-defined Bit Addresses

EE R I I R I O I I R I R R R R R I I R R R R I R R R R S R R for

t he 83C751/83C752

SCL
SDA

| TO
| EO
I T1
| E1
TRO
TFO
TR1
TF1

EE R R I I R I R I R R R O I R R

t he 83C751/83C752

aT
GATE

EE R R I I R I R R R R R O R R

t he 80515/ 80535

I NT3

I NT4

I NT5

| NT6

I NT2
T2EX
CLKOUT
T2

EE R R I I R I R I R S R I S R R

t he 83C152/80C152

GRXD
GI'XD
DEN
TXC
RXC

EE R R I I R I R I R R R R I S R R

t he 83C552/80C552

CT0I
CT1l
Cr2l
CT3I
T2
RT2
SCL
SDA

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

080H
081H

088H
089H
08AH
08BH
08CH
08DH
08EH
08FH

08EH
08FH

090H
091H
092H
093H
094H
095H
096H
097H

090H
091H
092H
093H
094H

090H
091H
092H
093H
094H
095H
096H
097H

; PO.
; PO.

EE IR R I I R I R R R S R R I S R R

; TCON.
; TCON.
; TCON.
; TCON.
; TCON.
; TCON.
; TCON.
; TCON.

; TCON.
; TCON.

EE R R I I R I R R R R R O R R

; P1.
; P1.
; P1.
; P1.
; P1.
; P1.
; P1.
; P1.

EE R R I I R I R I R S R I S R R

; P1.
; P1.
; P1.
; P1.
; P1.

EE R R I I R I R I R S R I S R R

; P1.
; P1.
; P1.
; P1.
; P1.
; P1.
; P1.
; P1.

0
1

O, WNEO

7

0
1
2
3
4

O, WNPEO

7

* %

~No o~ wdNEFEO

| 2C SERI AL CLOCK
| 2C SERI AL DATA

R I I R R I R I I R R R R R R

- EXT. I NTERRUPT 0 TYPE

- EXT. INTERRUPT 0 EDGE FLAG
- EXT. INTERRUPT 1 TYPE

- EXT. INTERRUPT 1 EDGE FLAG
- TIMER 0 ON/ OFF CONTROL

- TIMER 0 OVERFLOW FLAG

- TIMER 1 ON OFF CONTRCOL

- TIMER 1 OVERFLOW FLAG

R I I R R I R I I R R R R R R for

- COUNTER OR TI MER OPERATI ON
- GATE TI MER

R I I R R I R I I R R R R R R

R I I R R I R I I R R R R R R for

EXT. | NTERRUPT 3/ CAPT & COW 0
EXT. | NTERRUPT 4/ CAPT & COW 1
EXT. | NTERRUPT 5/ CAPT & COWP 2
EXT. | NTERRUPT 6/ CAPT & COW 3
EXT. | NTERRUPT 2

TIMER 2 EXT. RELOAD TRI GGER | NP
SYSTEM CLOCK OUTPUT

TI MER 2 | NPUT

R I I R R R I I R R R R O

R I I R R R I I R R R R O for

GSC RECEI VER DATA | NPUT

GSC TRANSM TTER DATA OUTPUT

DRI VE ENABLE TO ENABLE EXT DRI VE
GSC EXTERNAL TRANSM T CLOCK | NPU
GSC EXTERNAL RECEI VER CLOCK | NPU

R I I R R I I R R R R R R

R I I R R I I R R R R O O for

CAPTURE/ TI MER | NPUT 0
CAPTURE/ TI MER | NPUT 1
CAPTURE/ TI MER | NPUT 2
CAPTURE/ TI MER | NPUT 3

T2 EVENT | NPUT

T2 TI MER RESET SI GNAL
SERI AL PORT CLOCK LINE I2C
SERI AL PORT DATA LINE I2C

EE R I I R I R I I R I R R R R R R I I R R I R R S R R O R

EE R I R R R I R R R I R I R for

t he 80C517/80C537

I NT3 BIT
I NT4 BIT
I NT5 BIT
I NT6 BIT
I NT2 BIT
T2EX BIT
CLKOUT BIT
T2 BIT

EEE R R R I R R I R I R R I R

EEE R R R I R R I R I R R I R

090H
091H
092H
093H
094H
095H
096H
097H

; PL.
; PL.

P1.
P1.
P1.
P1.
P1.
P1.

OO0l WNPFE O

~

t he 80C452/83C452 and 80C152/83C152

HLD BIT
HLDA BIT

EEE R R R I R R I R R R I R

EEE R R R I R R R I R I R R I R

t he 83C751/83C752

EE R R R R I R R R I R R R I I R

I NTO BIT
I NT1 BIT
T0 BIT
R BIT
TI BIT
RB8 BIT
TB8 BIT
REN BIT
Swe BIT
SML BIT
SMD) BIT

095H
096H

095H
096H
096H

098H
099H
09AH
09BH
09CH
09DH
09EH
09FH

; SCON.
; SCON.
; SCON.
; SCON.
; SCON.
; SCON.
; SCON.
; SCON.

P1.5
P1. 6

P1.5
P1. 6

EXT. | NTERRUPT 3/ CAPT & COWP 0O
EXT. | NTERRUPT 4/ CAPT & COWP 1
EXT. | NTERRUPT 5/ CAPT & COWP 2
EXT. | NTERRUPT 6/ CAPT & COWP 3
EXT. | NTERRUPT 2

TIMER 2 EXT. RELOAD TRI GGER | NPU
SYSTEM CLOCK OUTPUT

TI MER 2 | NPUT

EEIE R R R I R R R I R I R R I I R

EEE R R R I R R I R R R I R for

DVA HOLD REQUEST 1/0
DVA HOLD ACKNOWLEDGE OUTPUT

EE R R R R I R R I R R R I R

EE R R R R I R R I R R R I R for

P1.7 -

EXTERNAL | NTERRUPT O | NPUT
EXTERNAL | NTERRUPT 1 | NPUT
TI MER O COUNT | NPUT

EE R R R R I R R I R R R I R

~No o wWNPEFEO
1

- RECEI VE | NTERRUPT FLAG

- TRANSM T | NTERRUPT FLAG

- RECEIVE BIT 8

- TRANSMT BIT 8

RECEI VE ENABLE

- SERIAL MODE CONTRCL BIT 2
- SERIAL MODE CONTRCL BIT 1
- SERIAL MODE CONTRCL BIT O

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 83C751/83C752

; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.
; 1 2CON.

- MASTER

- STOP

- START

- ARBI TRATI ON LCSS

- DATA READY

- ATTENTI ON

- RECEI VE DATA

TRANSM T STOP

- TRANSM T REPEATED START
- CLEAR STOP

- CLEAR START

- CLEAR ARBI TRATI ON LCGSS
- CLEAR DATA READY

- GO IDLE

CLEAR TRANSM T ACTI VE

OO WNPFPO~NOOUOOPRAWDNEPER
1

~
1

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

MASTER Bl T(READ) 099H
STP Bl T(READ) 09AH
STR Bl T(READ) 09BH
ARL Bl T(READ) 09CH
DRDY Bl T(READ) 09DH
ATN Bl T(READ) 09EH
RDAT Bl T(READ) 09FH
XSTP Bl T(\RI TE) 098H
XSTR BI T(\RI TE) 099H
CSTP Bl T(\RI TE) 09AH
CSTR Bl T(\RI TE) 09BH
CARL Bl T(\RI TE) 09CH
CDR Bl T(\RI TE) 09DH
| DLE Bl T(R TE) 09EH
CXA Bl T(\RI TE) 09FH
EX0 BI T 0ASH
ETO BI T 0A9H
EX1 BI T 0AAH

IE. O
TE 1
IE. 2

EXTERNAL | NTERRUPT O ENABLE
TI MER O | NTERRUPT ENABLE
EXTERNAL | NTERRUPT 1 ENABLE

B-12

ET1 BIT OABH ;1E.3 - TIMER 1 | NTERRUPT ENABLE

ES BIT OACH ;1E.4 - SERI AL PORT | NTERRUPT ENABLE
kkkkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkkhkhhhhkhkhkkkkhhkhhkhkhkhkkkhkhkhkhkhkikhkkkkk , khkhkhkkkxkkk****%
the 83C751/83C752

El 2 BIT OACH ;1E.4 - SERI AL PORT | NTERRUPT ENABLE

LR R R R SRR EEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEEEE SRS EREEEEEE SRR SRR SRR EEREESES

LR R R R EEREEEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES

the 8052/ 8032, 80C154/83C154, 80C252(80C51FA), 80515/80535
ET2 BIT OADH ; TIMER 2 | NTERRUPT ENABLE

LR R R R R RS EREEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEEE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR EEEEEEREEREEEEREEEREEEEREESEEREEEEEEREREEEREEEEEEEREEEREEE R SRR SRR SRR EEREESS

the 80C652/ 83C652
ES1 BIT OADH ;1E.5 - SERIAL PORT 1 | NTERRUPT ENABLE

R R R R RS EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR EEEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEREEEREE RS SRR SRR SRR SRS SRR EEREESES

t he 80C252(80C51FA)
EC BI T OAEH 1 E.6 - ENABLE PCA | NTERRUPT

LR R R R R R RS EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEEE RS SRR SRR SRR SRS SRR EEREESS

LR R R R SRR EEEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEREEEEEE RS SRR SRR SRR SRR EEREEEREE S

t he 80515/ 80535
WDT BIT OAEH ; 1 ENO. 6 - WATCHDOG Tl MER RESET

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

LR EREE SRR S EEEEREREEREEEEREEEREEEEREESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS
t he 83C552/80C552

ES1 BIT OADH ; 1ENO. 5 - SERI AL PORT 1 | NTERRUPT ENABLE
EAD BIT OAEH ; 1 ENO. 6 - ENABLE A/ D | NTERRUPT

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS
LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESES
the 80C517/80C537

ET2 BIT OADH ; 1ENO. 5 - TIMER 2 | NTERRUPT ENABLE

WDT BIT OAEH ; 1 ENO. 6 - WATCHDOG Tl MER RESET

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

EA BIT OAFH ;1E.7 - GLOBAL | NTERRUPT ENABLE

RXD BIT OBOH ; P3.0 - SERI AL PORT RECEI VE | NPUT

TXD BIT 0B1H ;P3.1 - SERI AL PORT TRANSM T OQUTPUT

I NTO BIT 0B2H ; P3.2 - EXTERNAL | NTERRUPT O | NPUT

I NT1 BIT 0B3H ; P3.3 - EXTERNAL | NTERRUPT 1 | NPUT

T0 BIT 0B4H ;P3.4 - TIMER O COUNT | NPUT

T1 BIT 0B5H ;P3.5 - TIMER 1 COUNT | NPUT

VR BIT 0B6H ;P3.6 - WRITE CONTROL FOR EXT. MEMORY
RD BIT 0B7H ; P3.7 - READ CONTROL FOR EXT. MEMORY
PXO0 BIT 0B8H ;1 P.O0 - EXTERNAL | NTERRUPT O PRIORITY
PTO BIT 0B9H ;IP.1 - TIMER O PRIORITY

PX1 BIT OBAH ;1 P.2 - EXTERNAL I NTERRUPT 1 PRIORITY
PT1 BIT 0BBH ;IP.3 - TIMER 1 PRIORITY

PS BIT 0BCH ;1 P.4 - SERI AL PORT PRI ORI TY

R S S I S S S S S I S R S S S I S S
t he 80C154/83C154

PT2 BIT 0BCH ;IP.5 - TIMER 2 PRIORITY

PCT BIT OBFH ;1 P.7 - I NTERRUPT PRI ORI TY DI SABLE

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

for

for

for

for

for

for

for

for

EE R I R R R I R R R I R I R for

t he 80C652/ 83C652
PS1 BIT OBDH ;1P.5 - SERIAL PORT 1 PRIORITY

EE R I R R R I R R R I R I R

EE R I R R R I R R R I R I R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)
PT2 BIT OBDH ;IP.S5 - TIMER 2 PRIORITY
PPC BIT OBEH ;1P.6 - PCA PRIORITY

EE R R R R R R R R R R R R R R R R R R R I R R R I R R I R I R R

EE R R R R R R R R R R R R R R R R R I R R R I R R I R I R R for

t he 80515/80535 and 80C517/80C537

EADC BIT 0B8H ;1 EN1. 0 - A/ D CONVERTER | NTERRUPT EN
EX2 BIT 0B9H s TENL. 1 - EXT. | NTERRUPT 2 ENABLE

EX3 BIT OBAH ;1EN1. 2 - EXT. INT 3/ CAPT/COWP INT O EN
EX4 BIT 0BBH ;1EN1.3 - EXT. INT 4/ CAPT/COWP INT 1 EN
EX5 BIT 0BCH ;1 EN1. 4 - EXT. INT 5/ CAPT/COW |INT 2 EN
EX6 BIT OBDH 1EN1.5 - EXT. INT 6/ CAPT/ COWP | NT 3 EN
SWOT BIT OBEH ;1ENL. 6 - WATCHDOG Tl MER START

EXEN2 BIT OBFH s 1ENL. 7 - T2 EXT. RELOAD | NTER START

I ADC BIT 0CoH ;1 RCON. 0 - A/ D CONVERTER | NTER REQUEST

I EX2 BIT 0C1H ;1RCON. 1 - EXT. | NTERRUPT 2 EDGE FLAG

I EX3 BIT ocz2H ;1 RCON. 2 - EXT. | NTERRUPT 3 EDGE FLAG

| EX4 BIT 0C3H ;1 RCON. 3 - EXT. | NTERRUPT 4 EDGE FLAG

I EX5 BIT 0C4H ;1 RCON. 4 - EXT. | NTERRUPT 5 EDGE FLAG

| EX6 BIT 0C5H ; 1RCON.5 - EXT. | NTERRUPT 6 EDGE FLAG
TF2 BIT 0C6H ;1RCON. 6 - TIMER 2 OVERFLOW FLAG

EXF2 BIT 0C7H ;TRCON. 7 - TIMER 2 EXT. RELOAD FLAG

T21 O BIT 0C8H ; T2CON. O - TIMER 2 I NPUT SELECT BIT O
T211 BIT 0C9H ; T2CON.1 - TIMER 2 INPUT SELECT BIT 1
T2CM BIT 0CAH ; T2CON. 2 - COVPARE MCDE

T2R0 BIT 0CBH ; T2CON. 3 - TIMER 2 RELOAD MODE SEL BIT O
T2R1 BIT 0CCH ; T2CON. 4 - TIMER 2 RELOAD MODE SEL BIT 1
| 2FR BIT 0CDH ; T2CON. 5 - EXT. INT 2 F/ R EDCGE FLAG

I 3FR BIT O0CEH ; T2CON. 6 - EXT. INT 3 F/ R EDCGE FLAG
T2PS BIT O0CFH ; T2CON. 7 - PRESCALER SELECT BIT

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 83C552/80C552

PS1 BIT OBDH ;1PO.5 - SIOL

PAD BIT OBEH ;1 PO.6 - A/ D CONVERTER

CMSRO BIT 0CoH ;P4.0 - T2 COVMPARE AND SET/ RESET OUTPUTS
CVSR1 BIT 0C1H ;P4.1 - T2 COVMPARE AND SET/ RESET OUTPUTS
CMVSR2 BIT ocz2H ;P4.2 - T2 COMPARE AND SET/ RESET OUTPUTS
CMVSR3 BIT 0C3H ;P4.3 - T2 COVMPARE AND SET/ RESET OUTPUTS
CVSR4 BIT 0C4H yP4.4 - T2 COMPARE AND SET/ RESET OUTPUTS
CMVSR5 BIT 0C5H ;P4.5 - T2 COVMPARE AND SET/ RESET OUTPUTS
CMTO BIT 0C6H ;P4.6 - T2 COVMPARE AND TOGGLE QUTPUTS
CMr1 BIT 0C7H ;P47 - T2 COVMPARE AND TOGGLE QUTPUTS
CT10 BIT 0C8H ; TMCIR. O - T2 CAPTURE O

CTi1 BIT 0C9H ; TMIR 1 - T2 CAPTURE 1

CT1 2 BIT 0CAH ; TMIR 2 - T2 CAPTURE 2

CT13 BIT 0CBH ; TMIR 3 - T2 CAPTURE 3

CM O BIT 0CCH ; TMIR 4 - T2 COMPARATOR O

cM 1 BIT 0CDH ; TMIR 5 - T2 COVPARATCOR 1

B-14

CM 2 BIT 0CEH ; TMIR 6 - T2 COMPARATOR 2
T20V BIT 0CFH s TMIR 7 - T2 OVERFLOW

LR R R R R R EEEEEEEREEREEEEREEEREEEEREESEEREEEEEEREEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR S EEEEEREEEEEEREEEREEEEREESEEREEEEEEREEEREEEREE SRS EREEEEEE SRR SRS EEREEREREESES for

t he RUPI -44

RBP BIT 0C8H ; STS. 0 - RECEI VE BUFFER PROTECT

AM BIT 0C9H ; STS. 1 - AUTO ADDRESSED MODE SELECT
OPB BIT 0CAH ; STS. 2 - OPTIONAL POLL BIT

BOV BIT 0CBH ; STS. 3 - RECEI VE BUFFER OVERRUN
Sl BIT 0CCH ; STS. 4 - SIU | NTERRUPT FLAG

RTS BIT 0CDH ; STS. 5 - REQUEST TO SEND

RBE BIT 0CEH ; STS. 6 - RECElI VE BUFFER EMPTY

TBF BIT 0CFH ; STS. 7 - TRANSM T BUFFER FULL

R R R R RS EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEREEEREE RS SRR SRR SRR SRR SRR EEREESS

LR R R R SRR EEEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEREEEREE RS SRR SRR SRR SRS SRR EEREESES for

the 8052/ 8032, 80C154/83C154, 80C51FA/ 83C51FA(83C252/ 80C252)

CAP2 BIT 0C8H ; T2ZCON. 0 - CAPTURE OR RELOAD SELECT

CNT2 BIT 0C9H ; T2CON.1 - TI MER OR COUNTER SELECT

TR2 BIT 0CAH ; T2CON. 2 - TIMER 2 OV OFF CONTROL

EXEN2 BIT 0CBH ; T2CON. 3 - TIMER 2 EXTERNAL ENABLE FLAG
TCLK BIT 0CCH ; T2CON. 4 - TRANSM T CLOCK SELECT

RCLK BIT 0CDH ; T2ZCON. 5 - RECEI VE CLOCK SELECT

EXF2 BIT 0CEH ; T2ZCON. 6 - EXTERNAL TRANSI TI ON FLAG

TF2 BIT 0CFH ; T2CON. 7 - TIMER 2 OVERFLOW FLAG
kkkkkhkkhkhkhkkhkkkhkhkhhhkhkhkhkkhkhhkhhkhkhkhkkhhhhhkhkhkhkkhkhkhhhkhkhkkkhkhkhkhkhkikhkkkkk k k khkkkxkkk****

LR R R R SRR S EEEEREREEREEEEREEEREREEEEESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES for

t he 83C152/80C152

EGSRV BIT 0C8H ; 1EN1. 0 - GSC RECEI VE VALI D
EGSRE BIT 0C9H ;1ENL. 1 - GSC RECEI VE ERROR
EDMAO BIT 0CAH ; 1ENL. 2 - DMA CHANNEL REQUEST O
EGSTV BIT 0CBH ;1ENL. 3 - GSC TRANSM T VALI D
EDVAL BIT 0CCH ; 1ENL. 4 - DMA CHANNEL REQUEST 1
EGSTE BIT 0CDH ;1ENL. 5 - GSC TRANSM T ERROR

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 80512/ 80532
I ADC BIT 0COH ; 1 RCON. 0 - A/ D CONVERTER | NTERRUPT REQ

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

P BIT ODOH ; PSW O - ACCUMULATOR PARITY FLAG

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

t he 83C552/80C552
F1 BIT OD1H ; PSW1 - FLAG 1

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 80512/ 80532

F1 BIT OD1H ; PSW1 - FLAG 1

MXO0 BIT OD8H ; ADCON. 0 - ANALOG I NPUT CH SELECT BIT O
VX1 BIT OD9H ; ADCON. 1 - ANALOG I NPUT CH SELECT BIT 1
MX2 BIT ODAH ; ADCON. 2 - ANALOG | NPUT CH SELECT BIT 2
ADM BIT ODBH ; ADCON. 3 - A/ D CONVERSI ON MODE

BSY BIT ODCH ; ADCON. 4 - BUSY FLAG

BD BIT ODFH ; ADCON. 7 - BAUD RATE ENABLE

B-15

EE R I R R R I R R R I R I R

ov
RSO
RS1
FO
AC
Cy

BIT
BIT
BIT
BIT
BIT
BIT

0D2H
OD3H
0D4H
OD5H
OD6H
OD7H

; PSW 2
; PSW 3
; PSW 4
; PSW 5
; PSW 6
; PSW 7

OVERFLOW FLAG

REG STER BANK SELECT 0
REG STER BANK SELECT 1
FLAG 0O

AUXI LI ARY CARRY FLAG
CARRY FLAG

EE R R R R R R R R R R R R R R R R R I R R R I R R I R I R R for

t he 80C51FA/ 83C51FA(83C252/ 80C252)
; CCON. 0 - PCA MODULE 0 | NTERRUPT FLAG
; CCON. 1 - PCA MODULE 1 | NTERRUPT FLAG
; CCON. 2 - PCA MODULE 2 | NTERRUPT FLAG
; CCON. 3 - PCA MODULE 3 | NTERRUPT FLAG
; CCON. 4 - PCA MODULE 4 | NTERRUPT FLAG
; CCON. 6 -

CCFO
CCF1
CCF2
CCF3
CCF4
CR

CF

BIT
BIT
BIT
BIT
BIT
BIT
BIT

OD8H
OD9H
ODAH
0DBH
ODCH
ODEH
ODFH

COUNTER RUN

; PCA COUNTER OVERFLOW FLAG

EE R I R R R I R R I R I R R

EE R R R R R R R R R R R R R R R R R R R I R R R I R R I R R I R R for

the RUPI -44

SER BIT
NRO BIT
NR1 BIT
NR2 BIT
SES BIT
NSO BIT
NS1 BIT
NS2 BIT

OD8H
OD9H
ODAH
ODBH
ODCH
ODDH
ODEH
ODFH

; NSNR.
; NSNR.
; NSNR.
; NSNR.
; NSNR.
; NSNR.
; NSNR.
; NSNR.

OO0k WNPEF O

7

RECEI VE SEQUENCE ERRCR

RECEI VE SEQUENCE COUNTER-BI T O
RECEI VE SEQUENCE COUNTER-BIT 1
RECEI VE SEQUENCE COUNTER-BI T 2
SEND SEQUENCE ERROR

SEND SEQUENCE COUNTER-BIT O
SEND SEQUENCE COUNTER-BIT 1
SEND SEQUENCE COUNTER-BIT 2

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 80515/ 80535

VX0

MX1

MX2

ADM
BSY
CLK
BD

EE R R I I R R I R R I R I R

EE R R I I R R I R R I R I R

t he 80C652/ 83C652

CRO
CR1
AA

S
STO
STA
ENS1

EE R R I I R R I R R I R I R

EE R R I I R R I R R I R I R

t he 83C152/80C152

DVA
TEN

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

OD8H
OD9H
ODAH
ODBH
ODCH
ODEH
ODFH

OD8H
OD9H
ODAH
ODBH
ODCH
ODDH
ODEH

OD8H
OD9H

; ADCON.
; ADCON.
; ADCON.
; ADCON.
; ADCON.
; ADCON.
; ADCON.

; S1CON.
; S1CON.
; S1CON.
; S1CON.
; S1CON.
; S1CON.
; S1CON.

ah~hwdNNPEFEO

7

ah~hwdNNPEFEO

6

; TSTAT. O
; TSTAT. 1

ANALOG | NPUT CH SELECT BIT O
ANALOG | NPUT CH SELECT BIT 1
ANALOG | NPUT CH SELECT BIT 2
- A/ D CONVERSI ON MODE

BUSY FLAG

SYSTEM CLOCK ENABLE

- BAUD RATE ENABLE

EE R R R I R I I R R R I R I R I R

EE R R R I R I I R R R I R I R I R for

- CLOCK RATE O

- CLOCK RATE 1
ASSERT ACKNOW.EDGE
- SIO1 | NTERRUPT BI'T
STOP FLAG

- START FLAG

- ENABLE SI 01

EE R R R R I I I R R I R I I O R

EE R R R R I I I R R I R I I O R for

- DMA SELECT
- TRANSM T ENABLE

B-16

TFNF
TDN
TCDT
UR
NOACK
LNI
HBAEN
GREN
RFNE
RDN
CRCE
AE
RCABT
OR
PGSRV
PGSRE
PDMAO
PGSTV
PDVAL
PGSTE

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

ODAH
ODBH
0DCH
ODDH
ODEH
ODFH
OE8H
OE9H
OEAH
OEBH
OECH
OEDH
OEEH
OEFH
OF8H
OF9H
OFAH
OFBH
OFCH
OFDH

; TSTAT.
; TSTAT.
; TSTAT.
; TSTAT.
; TSTAT.
; TSTAT.
; RSTAT.
; RSTAT.
; RSTAT.
; RSTAT.
; RSTAT.
; RSTAT.
; RSTAT.
; RSTAT.

; 1 PNL.
; 1 PNL.
; 1 PNL.
; 1 PNL.
; 1 PNL.
; 1 PNL.

~NO O WNPFPONOOOPMWN

0
1
2 -
3

4 -
5 -

- TRANSM T FI FO NOT' FULL
- TRANSM T DONE

- TRANSM T COLLI SI ON DETECT

- UNDERRUN
- NO ACKNOW.EDGE
- LINE I DLE

- HARDWARE BASED ACKNOW.EDGE EN

- RECEI VER ENABLE

- RECEI VER FI FO NOT EMPTY
- RECEI VER DONE

- CRC ERROR

- ALI GNMENT ERROR

- RCVR COLLI SI ONV ABORT DETECT

- OVERRUN
GSC RECEI VE VALI D
GSC RECEI VE ERROR
DVA CHANNEL REQUEST O
GSC TRANSM T VALI D
DVA CHANNEL REQUEST 1
GSC TRANSM T ERROR

LR R R R SRR S EEEEREREEREEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEEE RS SRR SRR SRR SRR SRR EEREESS for

the 80C452/83C452

OFRS BIT OE8H ; SLCON. 0 - QUTPUT FI FO CH REQ SERVI CE

I FRS BIT OE9H ; SLCON. 1 - I NPUT FI FO CH REQ SERVI CE

FRZ BIT OEBH ; SLCON. 3 - ENABLE FI FO DMA FREEZE MODE

I Ca BIT OECH ; SLCON. 4 - GEN I NT WHEN | MMEDI ATE COVIVAN
OQUT REG STER | S AVAI LABLE

I Cl BIT OEDH ; SLCON. 5 - GEN INT WHEN A COMMAND | S

VRI TTEN TO | MMEDI ATE COMVAND | N REG

CFI BIT OEEH ; SLCON. 6 - ENABLE OUTPUT FI FO | NTERRUPT

I FI BIT OEFH ; SLCON. 7 - ENABLE | NPUT FI FO | NTERRUPT
EFI FO BIT OF8H ;1EP.O - FIFO SLAVE BUS I/F INT EN

PDVAL BIT OF9H ;1EP.1 - DMA CHANNEL REQUEST 1

PDMAO BIT OFAH ; 1EP.2 - DMA CHANNEL REQUEST O

EDVAL BIT OFBH ; 1EP.3 - DMA CHANNEL 1 | NTERRUPT ENABLE
EDMAO BIT OFCH ;1EP.4 - DMA CHANNEL O | NTERRUPT ENABLE
PFI FO BIT OFDH ;1EP.5 - FIFO SLAVE BUS I/F INT PRIORITY

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 80C451/83C451

| BF BIT OE8H ; CSR. 0 - | NPUT BUFFER FULL

OBF BIT OE9H ; CSR.1 - OUTPUT BUFFER FULL

| DSM BIT OEAH ; CSR. 2 - | NPUT DATA STROBE

OBFC BIT OEBH ; CSR. 3 - OQUTPUT BUFFER FLAG CLEAR
MAO BIT OECH ; CSR. 4 - AFLAG MODE SELECT

MAL BIT OEDH ; CSR.5 - AFLAG MODE SELECT

VBO BIT OEEH ; CSR. 6 - BFLAG MODE SELECT

VBl BIT OEFH ; CSR. 7 - BFLAG MODE SELECT

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES

LR EREE SRR S EEEEREREEEEEEREEEREEEEEESEEREEEEEEREEEEREEEEREE R SRR SRR SRR SRR SRR EEREESES for

the 83C751/83C752
CTo Bl T(READ) OD8H
Cr1 Bl T(READ) OD9H

;12CFG.0 - CLOCK TIMNG 0
;12CFG.1 - CLOCK TIMNG 1

B-17

T1RUN Bl T(READ) ODCH 7 12CFG. 4 - START/ STOP TI MER 1

MASTRQ Bl T(READ) ODEH ;12CFG. 6 - MASTER | 2C

SLAVEN Bl T(READ) ODFH ;12CFG. 7 - SLAVE | 2C

CT0 Bl T(WRI TE) OD8H ;12CFG. 0 - CLOCK TIM NG 0

CT1 Bl T(WRI TE) OD9H ;12CFG.1 - CLOCK TIM NG 1

TI RUN Bl T(WRI TE) ODCH 7 12CFG. 4 - START/ STOP TI MER 1
CLRTI Bl T(WRI TE) ODDH ;12CFG. 5 - CLEAR TIMER 1 | NTERRUPT FLAG
MASTRQ Bl T(WRI TE) ODEH ;12CFG. 6 - MASTER | 2C

SLAVEN Bl T(WRI TE) ODFH ;12CFG. 7 - SLAVE | 2C

RSTP Bl T(READ) OF8H ;12STA.0 - XM T STOP CONDI TI ON
RSTR Bl T(READ) OF9H ;12STA.1 - XM T REPEAT STOP COND.
MAKSTP Bl T(READ) OFAH ;1 2STA. 2 - STOP CONDI Tl ON

MAKSTR Bl T(READ) OFBH ;1 2STA. 3 - START CONDI TI ON

XACTV Bl T(READ) OFCH ;12STA.4 - XM T ACTI VE

XDATA Bl T(READ) OFDH ;1 2STA.5 - CONTENT OF XM T BUFFER
RI DLE Bl T(READ) OFEH ;1 2STA. 6 - SLAVE | DLE FLAG

EE R R R R R R R R R R R R R R R R I R R R I R R I R R I R R

EE R R R R R R R R R R R R R I R R R I R R R I R R I R R for

t he 83C552/80C552

CRO BIT OD8H ; SICON. 0 - CLOCK RATE 0

CR1 BIT OD9H ; SICON. 1 - CLOCK RATE 1

AA BIT ODAH ; SICON. 2 - ASSERT ACKNOW.EDGE

Sl BIT 0DBH ; SICON. 3 - SERI AL |/ O | NTERRUPT
STO BIT 0DCH ; SICON. 4 - STOP FLAG

STA BIT ODDH ; SICON. 5 - START FLAG

ENS1 BIT ODEH ; SICON. 6 - ENABLE SERIAL 1/0
ECTO BIT OE8H ;1EN1. O - ENABLE T2 CAPTURE O
ECT1 BIT OE9H ;1EN1. 1 - ENABLE T2 CAPTURE 1
ECT2 BIT OEAH ;1ENL. 2 - ENABLE T2 CAPTURE 2
ECT3 BIT OEBH ;1EN1. 3 - ENABLE T2 CAPTURE 3
ECMD BIT OECH ;1 EN1. 4 - ENABLE T2 COVPARATOR O
ECML BIT OEDH ;1ENL. 5 - ENABLE T2 COVPARATOR 1
ECV2 BIT OEEH ;1 EN1. 6 - ENABLE T2 COVPARATOR 2
ET2 BIT OEFH ;1ENL. 7 - ENABLE T2 OVERFLOW
PCTO BIT OF8H ;1P1.0 - T2 CAPTURE REG STER 0O
PCT1 BIT OF9H ;P11 - T2 CAPTURE REG STER 1
PCT2 BIT OFAH ;1P1.2 - T2 CAPTURE REG STER 2
PCT3 BIT OFBH ;1P1.3 - T2 CAPTURE REG STER 3
PCMD BIT OFCH ;1P1.4 - T2 COMPARATOR O

PCML BIT OFDH ;P15 - T2 COVPARATOR 1

PCwv2 BIT OFEH ;1P1L.6 - T2 COVPARATOR 2

PT2 BIT OFFH ;1PL.7 - T2 OVERFLOW

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R

ERE R R R R R R R R R R R R I R R R I R R I R R R I R I R R for

t he 80C517/80C537

F1 BIT OD1H ;PSW1 - FLAG 1

VX0 BIT OD8H ; ADCONO. O - ANALOG I NPUT CH SELECT BIT O
MX1 BIT OD9H ; ADCONO. 1 - ANALCG I NPUT CH SELECT BIT 1
MX2 BIT ODAH ; ADCONO. 2 - ANALCG I NPUT CH SELECT BIT 2
ADM BIT ODBH ; ADCONO. 3 - A/ D CONVERSI ON MODE

BSY BIT 0DCH ; ADCONO. 4 - BUSY FLAG

CLK BIT ODEH ; ADCONO. 5 - SYSTEM CLOCK ENABLE

BD BIT ODFH ; ADCONO. 7 - BAUD RATE ENABLE

ER R R R R R R R R R R R R R R R I R R R I R R I R I R R

B-18

LR R R R R R RS EEEEREREEEEEEREEEREEEEREESEEREEEEEEREEEEREEEREE RS SRR SRR SRR SRR SRR EEREESES for

t he 80C154/83C154

ALF BIT OF8H ; 1OCON. 0 - CPU PONER DOWN MODE CONTRCL
P1F BIT OF9H ;1OCON.1 - PORT 1 HI GH | MPEDANCE

P2F BIT OFAH ; 1OCON. 2 - PORT 2 HI GH | MPEDANCE

P3F BIT OFBH ; 1 OCON. 3 - PORT 3 HI GH | MPEDANCE

| ZC BIT OFCH ;1OCON. 4 - 10K TO 100 K OHM SW TCH (P1-3)
SERR BIT OFDH ; 1OCON. 5 - SERI AL PORT RCV ERROR FLAG
T32 BIT OFEH ;1OCON.6 - 32 BIT TI MER SW TCH

WDT BIT OFFH ; 1OCON. 7 - WATCHDOG TI MER CONTROL

PR R R R SRR EEEEEREREEEEEEEEEEREEEREREEEREEEREEEEREEEEREE SRR EREEE SRR SRR SRR SRR SRR EEEE S

APPENDIX C

RESERVED SYMBOLS

The following is a list of reserved symbols used by the Cross Assembler. These symbols
cannot be redefined.

A AB ACALL ADD
ADDC AIMP AND ANL
ARO ARL AR2 AR3
AR4 AR5 ARG AR7
BI T BSEG c CALL
CINE CLR CODE CPL
CSEG DA DATA DB
DBI T DEC DI V DINZ
DPTR DS DSEG DW
END EQ EQU GE
GT HI GH | DATA I NC

| SEG JB JBC Jc
JWP JNB JNC INZ
Jz LCALL LE LIMVP
LOW LT MOD MOV
MOVC MOVX MUL NE
NOP NOT OR ORG
ORL PC POP PUSH
RO R1 R2 R3

R4 R5 R6 R7
RET RETI RL RLC
RR RRC SET SETB
SHL SHR SIMP SUBB
SWAP USI NG XCH XCHD
XDATA XOR XRL XSEG

Hori zontal Tab

Li ne Feed
Carriage Return
Space

Excl amati on Poi nt
Pound Si gn

Dol I ar Sign
Percent Sign
Anmper sand

Apost rophe

Left Parenthesis
Ri ght Parent hesis
Ast eri sk

Pl us sign

Comma

Hyphen

Peri od

Sl ash

Nunber

0
1
2
3
" 4
5
6
7
8
9

Col on

Seni - col on

Left Angle Bracket
Equal Sign

Ri ght Angl e Bracket

Question Mark
At Sign
Upper Case

A
B
C
D
" " E
F
G
H
I
J

APPENDIX D

FORM

O©CoOoO~NOOUDWNEO ™"

CTIETMOOW>»E DV I AT

CROSS ASSEMBLER CHARACTER SET

ASCI |
HEX

CODE
DECI MAL

Under score

Lower

Case

N<Xs<cCcHwmOUwOoOZZIr R

N<Xs<CH0wDOTVOZZIr"AR«“~"IOTMMOO®>»

N<Xs<cCcHwmOTwOoOZZIr R

NS Xs<c—~0w-0O0TO0O>3 - X~T~7JQ™"0aQ00T]|

4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5F
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
95
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

